Graphene nanoribbons: fabrication, properties and devices

被引:192
作者
Celis, A. [1 ,2 ]
Nair, M. N. [2 ]
Taleb-Ibrahimi, A. [2 ]
Conrad, E. H. [3 ]
Berger, C. [3 ,4 ]
de Heer, W. A. [4 ]
Tejeda, A. [1 ,2 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, CNRS, Lab Phys Solides, F-91405 Orsay, France
[2] Synchrotron SOLEIL UR1 CNRS, F-91192 Gif Sur Yvette, France
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] Univ Grenoble, Inst Neel CNRS, F-38042 Grenoble, France
基金
美国国家科学基金会;
关键词
graphene; nanoribbon; fabrication; devices; FIELD-EFFECT TRANSISTORS; WALLED CARBON NANOTUBES; EPITAXIAL GRAPHENE; BAND-GAP; DIRECT GROWTH; GRAPHITIC NANORIBBONS; ATOMIC-STRUCTURE; LAYER GRAPHENE; SINGLE-LAYER; SIC; 0001;
D O I
10.1088/0022-3727/49/14/143001
中图分类号
O59 [应用物理学];
学科分类号
摘要
Graphene nanoribbons are fundamental components to the development of graphene nanoelectronics. At the nanoscale, electronic confinement effects and electronic edge states become essential to the properties of graphene. These effects depend critically on the ribbon width and the nature of the ribbon edge, the control of which at the atomic scale is a major challenge. Graphene nanoribbons have been largely studied theoretically, experimentally and with the perspective of electronic applications. We review the basic properties of graphene nanoribbons and recent progress in fabrication processes, focusing on the question of the electronic gap. We examine top-down and bottom-up approaches to fabricate graphene nanoribbons by lithographic, catalytic cutting, chemical assembly and epitaxial growth methods and compare their electronic characteristics.
引用
收藏
页数:17
相关论文
共 113 条
[31]   Electronic transport properties of graphene nanoribbon arrays fabricated by unzipping aligned nanotubes [J].
Gong, Youpin ;
Long, Mingsheng ;
Liu, Guangtong ;
Gao, Song ;
Zhu, Chao ;
Wei, Xiangfei ;
Geng, Xiumei ;
Sun, Mengtao ;
Yang, Changli ;
Lu, Li ;
Liu, Liwei .
PHYSICAL REVIEW B, 2013, 87 (16)
[32]   Scaling of the localization length in armchair-edge graphene nanoribbons [J].
Gunlycke, D. ;
White, C. T. .
PHYSICAL REVIEW B, 2010, 81 (07)
[33]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[34]   Electron Transport in Disordered Graphene Nanoribbons [J].
Han, Melinda Y. ;
Brant, Juliana C. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 104 (05)
[35]   Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics [J].
Hertel, S. ;
Waldmann, D. ;
Jobst, J. ;
Albert, A. ;
Albrecht, M. ;
Reshanov, S. ;
Schoner, A. ;
Krieger, M. ;
Weber, H. B. .
NATURE COMMUNICATIONS, 2012, 3
[36]  
Hicks J, 2013, NAT PHYS, V9, P49, DOI [10.1038/NPHYS2487, 10.1038/nphys2487]
[37]   The structure of graphene grown on the SiC (000(1)over-bar) surface [J].
Hicks, J. ;
Shepperd, K. ;
Wang, F. ;
Conrad, E. H. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (15)
[38]   Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons [J].
Huang, Han ;
Wei, Dacheng ;
Sun, Jiatao ;
Wong, Swee Liang ;
Feng, Yuan Ping ;
Castro Neto, A. H. ;
Wee, Andrew Thye Shen .
SCIENTIFIC REPORTS, 2012, 2
[39]   Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates [J].
Hwang, Wan Sik ;
Zhao, Pei ;
Tahy, Kristof ;
Nyakiti, Luke O. ;
Wheeler, Virginia D. ;
Myers-Ward, Rachael L. ;
Eddy, Charles R., Jr. ;
Gaskill, D. Kurt ;
Robinson, Joshua A. ;
Haensch, Wilfried ;
Xing, Huili ;
Seabaugh, Alan ;
Jena, Debdeep .
APL MATERIALS, 2015, 3 (01)
[40]   Electronic states in finite graphene nanoribbons: Effect of charging and defects [J].
Ijas, M. ;
Ervasti, M. ;
Uppstu, A. ;
Liljeroth, P. ;
van der Lit, J. ;
Swart, I. ;
Harju, A. .
PHYSICAL REVIEW B, 2013, 88 (07)