Graphene nanoribbons: fabrication, properties and devices

被引:192
作者
Celis, A. [1 ,2 ]
Nair, M. N. [2 ]
Taleb-Ibrahimi, A. [2 ]
Conrad, E. H. [3 ]
Berger, C. [3 ,4 ]
de Heer, W. A. [4 ]
Tejeda, A. [1 ,2 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, CNRS, Lab Phys Solides, F-91405 Orsay, France
[2] Synchrotron SOLEIL UR1 CNRS, F-91192 Gif Sur Yvette, France
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] Univ Grenoble, Inst Neel CNRS, F-38042 Grenoble, France
基金
美国国家科学基金会;
关键词
graphene; nanoribbon; fabrication; devices; FIELD-EFFECT TRANSISTORS; WALLED CARBON NANOTUBES; EPITAXIAL GRAPHENE; BAND-GAP; DIRECT GROWTH; GRAPHITIC NANORIBBONS; ATOMIC-STRUCTURE; LAYER GRAPHENE; SINGLE-LAYER; SIC; 0001;
D O I
10.1088/0022-3727/49/14/143001
中图分类号
O59 [应用物理学];
学科分类号
摘要
Graphene nanoribbons are fundamental components to the development of graphene nanoelectronics. At the nanoscale, electronic confinement effects and electronic edge states become essential to the properties of graphene. These effects depend critically on the ribbon width and the nature of the ribbon edge, the control of which at the atomic scale is a major challenge. Graphene nanoribbons have been largely studied theoretically, experimentally and with the perspective of electronic applications. We review the basic properties of graphene nanoribbons and recent progress in fabrication processes, focusing on the question of the electronic gap. We examine top-down and bottom-up approaches to fabricate graphene nanoribbons by lithographic, catalytic cutting, chemical assembly and epitaxial growth methods and compare their electronic characteristics.
引用
收藏
页数:17
相关论文
共 113 条
[1]   Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask [J].
Bai, Jingwei ;
Duan, Xiangfeng ;
Huang, Yu .
NANO LETTERS, 2009, 9 (05) :2083-2087
[2]  
Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
[3]   Bipolar gating of epitaxial graphene by intercalation of Ge [J].
Baringhaus, J. ;
Stoehr, A. ;
Forti, S. ;
Krasnikov, S. A. ;
Zakharov, A. A. ;
Starke, U. ;
Tegenkamp, C. .
APPLIED PHYSICS LETTERS, 2014, 104 (26)
[4]   Exceptional ballistic transport in epitaxial graphene nanoribbons [J].
Baringhaus, Jens ;
Ruan, Ming ;
Edler, Frederik ;
Tejeda, Antonio ;
Sicot, Muriel ;
Taleb-Ibrahimi, Amina ;
Li, An-Ping ;
Jiang, Zhigang ;
Conrad, Edward H. ;
Berger, Claire ;
Tegenkamp, Christoph ;
de Heer, Walt A. .
NATURE, 2014, 506 (7488) :349-354
[5]   Edge-states in graphene nanoribbons: a combined spectroscopy and transport study [J].
Baringhaus, Jens ;
Edler, Frederik ;
Tegenkamp, Christoph .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (39)
[6]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[7]   Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups [J].
Bekyarova, Elena ;
Itkis, Mikhail E. ;
Ramesh, Palanisamy ;
Berger, Claire ;
Sprinkle, Michael ;
de Heer, Walt A. ;
Haddon, Robert C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (04) :1336-+
[8]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[9]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[10]   Chemically Induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances [J].
Biel, Blanca ;
Triozon, Francois ;
Blase, X. ;
Roche, Stephan .
NANO LETTERS, 2009, 9 (07) :2725-2729