A transient increase in intracellular calcium concentration [Ca2+](i) occurs throughout the cell as sea urchin embryos enter anaphase of the first cell cycle. The transient just precedes chromatid disjunction and spindle elongation. Microinjection of calcium chelators or heparin, an InsP(3), receptor antagonist, blocks chromosome separation. Photorelease of calcium or InsP, can reverse the block. Nuclear reformation is merely delayed by calcium antagonists at concentrations that block chromatid separation. Thus, the calcium signal triggers the separation of chromatids, while calcium-independent pathways can bring about the alterations in microtubule dynamics and nuclear events associated with anaphase progression. That calcium triggers chromosome disjunction alone is unexpected. It helps explain previous conflicting results and allows the prediction that calcium plays a similar role at anaphase in other cell types.