APHYN-EP: Physics-Based Deep Learning Framework to Learn and Forecast Cardiac Electrophysiology Dynamics

被引:1
作者
Kashtanova, Victoriya [1 ,2 ]
Pop, Mihaela [1 ,3 ]
Ayed, Ibrahim [4 ,5 ]
Gallinari, Patrick [4 ,6 ]
Sermesant, Maxime [1 ,2 ]
机构
[1] Univ Cote Azur, Inria, Nice, France
[2] 3IA Cote Azur, Sophia Antipolis, France
[3] Sunnybrook Res Inst, Toronto, ON, Canada
[4] Sorbonne Univ, Paris, France
[5] Theresis Lab, Thales, France
[6] Criteo AI Lab, Paris, France
来源
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: REGULAR AND CMRXMOTION CHALLENGE PAPERS, STACOM 2022 | 2022年 / 13593卷
关键词
Physics-based learning; Deep learning; Electrophysiology; Simulations; MODEL; TISSUE;
D O I
10.1007/978-3-031-23443-9_18
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Biophysically detailed mathematical modeling of cardiac electrophysiology is often computationally demanding, for example, when solving problems for various patient pathological conditions. Furthermore, it is still difficult to reduce the discrepancy between the output of idealized mathematical models and clinical measurements, which are usually noisy. In this paper, we propose a fast physics-based deep learning framework to learn cardiac electrophysiology dynamics from data. This novel framework has two components, decomposing the dynamics into a physical term and a data-driven term, respectively. This construction allows the framework to learn from data of different complexity. Using 0D in silico data, we demonstrate that this framework can reproduce the complex dynamics of transmembrane potential even in presence of noise in the data. Additionally, using ex vivo 0D optical mapping data of action potential, we show the ability of our framework to identify the relevant physical parameters for different heart regions.
引用
收藏
页码:190 / 199
页数:10
相关论文
共 22 条
  • [1] A simple two-variable model of cardiac excitation
    Aliev, RR
    Panfilov, AV
    [J]. CHAOS SOLITONS & FRACTALS, 1996, 7 (03) : 293 - 301
  • [2] Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology
    Camara, O.
    Sermesant, M.
    Lamata, P.
    Wang, L.
    Pop, M.
    Relan, J.
    De Craene, M.
    Delingette, H.
    Liu, H.
    Niederer, S.
    Pashaei, A.
    Plank, G.
    Romero, D.
    Sebastian, R.
    Wong, K. C. L.
    Zhang, H.
    Ayache, N.
    Frangi, A. F.
    Shi, P.
    Smith, N. P.
    Wright, G. A.
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2011, 107 (01) : 122 - 133
  • [3] Chen R T Q., 2018, ADV NEURAL INFORM PR, Vvol 31
  • [4] Chen Ricky T. Q., 2021, ICRL
  • [5] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [6] Court S, 2022, Arxiv, DOI arXiv:2107.03136
  • [7] IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE
    FITZHUGH, R
    [J]. BIOPHYSICAL JOURNAL, 1961, 1 (06) : 445 - &
  • [8] POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium
    Fresca, Stefania
    Manzoni, Andrea
    Dede, Luca
    Quarteroni, Alfio
    [J]. FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [9] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [10] EP-PINNs: Cardiac Electrophysiology Characterisation Using Physics-Informed Neural Networks
    Herrero Martin, Clara
    Oved, Alon
    Chowdhury, Rasheda A.
    Ullmann, Elisabeth
    Peters, Nicholas S.
    Bharath, Anil A.
    Varela, Marta
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 8