Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods

被引:124
作者
Clarke, Zoe A. [1 ,2 ]
Andrews, Tallulah S. [2 ,3 ,4 ]
Atif, Jawairia [3 ,4 ]
Pouyabahar, Delaram [1 ,2 ]
Innes, Brendan T. [1 ,2 ]
MacParland, Sonya A. [3 ,4 ,5 ]
Bader, Gary D. [1 ,2 ,6 ,7 ]
机构
[1] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[2] Univ Toronto, Donnelly Ctr, Toronto, ON, Canada
[3] Toronto Gen Hosp Res Inst, Ajmera Transplant Ctr, Toronto, ON, Canada
[4] Univ Toronto, Dept Immunol, Toronto, ON, Canada
[5] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada
[6] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[7] Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
关键词
RNA-SEQ DATA; GENE-EXPRESSION; REVEALS; UPDATE;
D O I
10.1038/s41596-021-00534-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This tutorial provides guidelines for interpreting single-cell transcriptomic maps to identify cell types, states and other biologically relevant patterns. Single-cell transcriptomics can profile thousands of cells in a single experiment and identify novel cell types, states and dynamics in a wide variety of tissues and organisms. Standard experimental protocols and analysis workflows have been developed to create single-cell transcriptomic maps from tissues. This tutorial focuses on how to interpret these data to identify cell types, states and other biologically relevant patterns with the objective of creating an annotated map of cells. We recommend a three-step workflow including automatic cell annotation (wherever possible), manual cell annotation and verification. Frequently encountered challenges are discussed, as well as strategies to address them. Guiding principles and specific recommendations for software tools and resources that can be used for each step are covered, and an R notebook is included to help run the recommended workflow. Basic familiarity with computer software is assumed, and basic knowledge of programming (e.g., in the R language) is recommended.
引用
收藏
页码:2749 / +
页数:17
相关论文
共 122 条
[1]   A comparison of automatic cell identification methods for single-cell RNA sequencing data [J].
Abdelaal, Tamim ;
Michielsen, Lieke ;
Cats, Davy ;
Hoogduin, Dylan ;
Mei, Hailiang ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
GENOME BIOLOGY, 2019, 20 (01)
[2]   Continuum of Gene-Expression Profiles Provides Spatial Division of Labor within a Differentiated Cell Type [J].
Adler, Miri ;
Kohanim, Yael Korem ;
Tendler, Avichai ;
Mayo, Avi ;
Alon, Uri .
CELL SYSTEMS, 2019, 8 (01) :43-+
[3]  
Adossa N. A., 2019, FEATURE EXTRACTION A, DOI [10.1101/686659, DOI 10.1101/686659]
[4]   Cell type discovery using single-cell transcriptomics: implications for ontological representation [J].
Aevermann, Brian D. ;
Novotny, Mark ;
Bakken, Trygve ;
Miller, Jeremy A. ;
Diehl, Alexander D. ;
Osumi-Sutherland, David ;
Lasken, Roger S. ;
Lein, Ed S. ;
Scheuermann, Richard H. .
HUMAN MOLECULAR GENETICS, 2018, 27 (R1) :R40-R47
[5]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[6]   An Introduction to the Analysis of Single-Cell RNA-Sequencing Data [J].
AlJanahi, Aisha A. ;
Danielsen, Mark ;
Dunbar, Cynthia E. .
MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 :189-196
[7]   Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity [J].
Angermueller, Christof ;
Clark, Stephen J. ;
Lee, Heather J. ;
Macaulay, Iain C. ;
Teng, Mabel J. ;
Hu, Tim Xiaoming ;
Krueger, Felix ;
Smallwood, Sebastien A. ;
Ponting, Chris P. ;
Voet, Thierry ;
Kelsey, Gavin ;
Stegle, Oliver ;
Reik, Wolf .
NATURE METHODS, 2016, 13 (03) :229-+
[8]  
[Anonymous], 2019, inferCNV of the Trinity CTAT Project
[9]   Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage [J].
Aran, Dvir ;
Looney, Agnieszka P. ;
Liu, Leqian ;
Wu, Esther ;
Fong, Valerie ;
Hsu, Austin ;
Chak, Suzanna ;
Naikawadi, Ram P. ;
Wolters, Paul J. ;
Abate, Adam R. ;
Butte, Atul J. ;
Bhattacharya, Mallar .
NATURE IMMUNOLOGY, 2019, 20 (02) :163-+
[10]   Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment [J].
Azizi, Elham ;
Carr, Ambrose J. ;
Plitas, George ;
Cornish, Andrew E. ;
Konopacki, Catherine ;
Prabhakaran, Sandhya ;
Nainys, Juozas ;
Wu, Kenmin ;
Kiseliovas, Vaidotas ;
Setty, Manu ;
Choi, Kristy ;
Fromme, Rachel M. ;
Phuong Dao ;
McKenney, Peter T. ;
Wasti, Ruby C. ;
Kadaveru, Krishna ;
Mazutis, Linas ;
Rudensky, Alexander Y. ;
Pe'er, Dana .
CELL, 2018, 174 (05) :1293-+