Structural variations causing inherited peripheral neuropathies: A paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation

被引:21
作者
Cutrupi, Anthony N. [1 ,2 ]
Brewer, Megan H. [1 ,2 ]
Nicholson, Garth A. [1 ,2 ,3 ]
Kennerson, Marina L. [1 ,2 ,3 ]
机构
[1] ANZAC Res Inst, Northcott Neurosci Lab, Sydney, NSW, Australia
[2] Univ Sydney, Sydney Med Sch, Sydney, NSW, Australia
[3] Concord Hosp, Mol Med Lab, Sydney, NSW, Australia
基金
英国医学研究理事会;
关键词
gene dysregulation; inherited peripheral neuropathies; structural variation; topological associated domains; MARIE-TOOTH-DISEASE; MYELIN-PROTEIN-ZERO; CONNEXIN; 32; GENE; MOTOR-NEURONS; PMP22; HEREDITARY NEUROPATHY; PRESSURE PALSIES; COPY-NUMBER; FAMILIAL ANIRIDIA; HEMOPHILIA-A;
D O I
10.1002/mgg3.390
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Inherited peripheral neuropathies (IPNs) are a clinically and genetically heterogeneous group of diseases affecting the motor and sensory peripheral nerves. IPNs have benefited from gene discovery and genetic diagnosis using next-generation sequencing with over 80 causative genes available for testing. Despite this success, up to 50% of cases remain genetically unsolved. In the absence of protein coding mutations, noncoding DNA or structural variation (SV) mutations are a possible explanation. The most common IPN, Charcot-Marie-Tooth neuropathy type 1A (CMT1A), is caused by a 1.5Mb duplication causing trisomy of the dosage sensitive gene PMP22. Using genome sequencing, we recently identified two large genomic rearrangements causing IPN subtypes X-linked CMT (CMTX3) and distal hereditary motor neuropathy (DHMN1), thereby expanding the spectrum of SV mutations causing IPN. Understanding how newly discovered SVs can cause IPN may serve as a useful paradigm to examine the role of topologically associated domains (TADs), chromatin interactions, and gene dysregulation in disease. This review will describe the growing role of SV in the pathogenesis of IPN and the importance of considering this type of mutation in Mendelian diseases where protein coding mutations cannot be identified.
引用
收藏
页码:422 / 433
页数:12
相关论文
共 95 条
[1]   Genotype/phenotype correlation in affected individuals of a family with a deletion of the entire coding sequence of the connexin 32 gene [J].
Ainsworth, PJ ;
Bolton, CF ;
Murphy, BC ;
Stuart, JA ;
Hahn, AF .
HUMAN GENETICS, 1998, 103 (02) :242-244
[2]   APPLICATIONS OF NEXT-GENERATION SEQUENCING Genome structural variation discovery and genotyping [J].
Alkan, Can ;
Coe, Bradley P. ;
Eichler, Evan E. .
NATURE REVIEWS GENETICS, 2011, 12 (05) :363-375
[3]   MOLECULAR ETIOLOGY OF FACTOR-VIII DEFICIENCY IN HEMOPHILIA-A [J].
ANTONARAKIS, SE ;
KAZAZIAN, HH ;
TUDDENHAM, EGD .
HUMAN MUTATION, 1995, 5 (01) :1-22
[4]   Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity [J].
Arber, S ;
Han, B ;
Mendelsohn, M ;
Smith, M ;
Jessell, TM ;
Sockanathan, S .
NEURON, 1999, 23 (04) :659-674
[5]   Inherited peripheral neuropathies: a myriad of genes and complex phenotypes [J].
Baets, Jonathan ;
Timmerman, Vincent .
BRAIN, 2011, 134 :1587-1590
[6]   Structural variation: the genome's hidden architecture [J].
Baker, Monya .
NATURE METHODS, 2012, 9 (02) :133-137
[7]   MLL translocations with concurrent 3′ deletions:: Interpretation of FISH results [J].
Barber, KE ;
Ford, AM ;
Harris, RL ;
Harrison, CJ ;
Moorman, AV .
GENES CHROMOSOMES & CANCER, 2004, 41 (03) :266-271
[8]   Clustering of Tissue-Specific Sub-TADs Accompanies the Regulation of HoxA Genes in Developing Limbs [J].
Berlivet, Soizik ;
Paquette, Denis ;
Dumouchel, Annie ;
Langlais, David ;
Dostie, Josee ;
Kmita, Marie .
PLOS GENETICS, 2013, 9 (12)
[9]   Organization and function of the 3D genome [J].
Bonev, Boyan ;
Cavalli, Giacomo .
NATURE REVIEWS GENETICS, 2016, 17 (11) :661-678
[10]   Getting the genome in shape: the formation of loops, domains and compartments [J].
Bouwman, Britta A. M. ;
de Laat, Wouter .
GENOME BIOLOGY, 2015, 16