Automatic deep learning-based myocardial infarction segmentation from delayed enhancement MRI

被引:22
作者
Chen, Zhihao [1 ]
Lalande, Alain [2 ,3 ]
Salomon, Michel [1 ]
Decourselle, Thomas [4 ]
Pommier, Thibaut [6 ]
Qayyum, Abdul [2 ]
Shi, Jixi [1 ,5 ]
Perrot, Gilles [1 ]
Couturier, Raphael [1 ]
机构
[1] Univ Bourgogne Franche Comte, FEMTO ST Inst, UMR6174, CNRS, Belfort, France
[2] Univ Bourgogne Franche Comte, ImViA Lab, EA7535, Dijon, France
[3] Univ Hosp Dijon, Dept Med Imaging, Dijon, France
[4] CASIS Co, Quetigny, France
[5] Univ Normandie, ESIGELEC, EA4353, IRSEEM, Rouen, France
[6] Univ Hosp Dijon, Dept Cardiol, Dijon, France
关键词
CNN; Semantic segmentation; DE-MRI; Myocardial infarction; Adaptive framework; LEFT-VENTRICLE; NETWORKS;
D O I
10.1016/j.compmedimag.2021.102014
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Delayed Enhancement cardiac MRI (DE-MRI) has become indispensable for the diagnosis of myocardial diseases. However, to quantify the disease severity, doctors need time to manually annotate the scar and myocardium. To address this issue, in this paper we propose an automatic myocardial infarction segmentation approach on the left ventricle from short-axis DE-MRI based on Convolutional Neural Networks (CNN). The objective is to segment myocardial infarction on short-axis DE-MRI images of the left ventricle acquired 10 min after the in-jection of a gadolinium-based contrast agent. The segmentation of the infarction area is realized in two stages: a first CNN model finds the contour of myocardium and a second CNN model segments the infarction. Compared to the manual intra-observer and inter-observer variations for the segmentation of myocardial infarction, and to the automatic segmentation with Gaussian Mixture Model, our proposal achieves satisfying segmentation results on our dataset of 904 DE-MRI slices.
引用
收藏
页数:9
相关论文
共 32 条
[11]   CE-Net: Context Encoder Network for 2D Medical Image Segmentation [J].
Gu, Zaiwang ;
Cheng, Jun ;
Fu, Huazhu ;
Zhou, Kang ;
Hao, Huaying ;
Zhao, Yitian ;
Zhang, Tianyang ;
Gao, Shenghua ;
Liu, Jiang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) :2281-2292
[12]  
He KM, 2014, LECT NOTES COMPUT SC, V8691, P346, DOI [arXiv:1406.4729, 10.1007/978-3-319-10578-9_23]
[13]  
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
[14]  
Isensee Fabian, 2018, Bildverarbeitung f ur die Medizin 2019
[15]   Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images [J].
Karim, Rashed ;
Bhagirath, Pranav ;
Claus, Piet ;
Housden, R. James ;
Chen, Zhong ;
Karimaghaloo, Zahra ;
Sohn, Hyon-Mok ;
Lara Rodriguez, Laura ;
Vera, Sergio ;
Alba, Xenia ;
Hennemuth, Anja ;
Peitgen, Heinz-Otto ;
Arbel, Tal ;
Gonzalez Ballester, Miguel A. ;
Frangi, Alejandro F. ;
Gotte, Marco ;
Razavi, Reza ;
Schaeffter, Tobias ;
Rhode, Kawal .
MEDICAL IMAGE ANALYSIS, 2016, 30 :95-107
[16]   Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function [J].
Kim, RJ ;
Fieno, DS ;
Parrish, TB ;
Harris, K ;
Chen, EL ;
Simonetti, O ;
Bundy, J ;
Finn, JP ;
Klocke, FJ ;
Judd, RM .
CIRCULATION, 1999, 100 (19) :1992-2002
[17]  
Lalande A., 2012, EUR SOC MAGN RESON M, V123
[18]   Emidec: A Database Usable for the Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI [J].
Lalande, Alain ;
Chen, Zhihao ;
Decourselle, Thomas ;
Qayyum, Abdul ;
Pommier, Thibaut ;
Lorgis, Luc ;
de la Rosa, Ezequiel ;
Cochet, Alexandre ;
Cottin, Yves ;
Ginhac, Dominique ;
Salomon, Michel ;
Couturier, Raphael ;
Meriaudeau, Fabrice .
DATA, 2020, 5 (04) :1-8
[19]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[20]   An overview of deep learning in medical imaging focusing on MRI [J].
Lundervold, Alexander Selvikvag ;
Lundervold, Arvid .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2019, 29 (02) :102-127