Bioceramics and bone healing

被引:120
作者
Ginebra, Maria-Pau [1 ]
Espanol, Montserrat [1 ]
Maazouz, Yassine [1 ,2 ]
Bergez, Victor [2 ]
Pastorino, David [2 ]
机构
[1] Univ Politecn Cataluna, Dept Mat Sci & Met Engn, Biomat Biomech & Tissue Engn Grp, Barcelona, Spain
[2] Mimetis Biomat, Barcelona, Spain
关键词
Bioceramics; bone healing; bone graft; calcium phosphate; CALCIUM-PHOSPHATE CEMENTS; DRUG-DELIVERY; STEM-CELLS; HYDROXYAPATITE; SCAFFOLDS; BIOMATERIALS; REGENERATION; SUBSTITUTES; CERAMICS; SIZE;
D O I
10.1302/2058-5241.3.170056
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Calcium phosphates have long been used as synthetic bone grafts. Recent studies have shown that the modulation of composition and textural properties, such as nano-, micro- and macro-porosity, is a powerful strategy to control and synchronize material resorption and bone formation. Biomimetic calcium phosphates, which closely mimic the composition and structure of bone mineral, can be produced using low-temperature processing routes, and offer the possibility to modulate the material properties to a larger extent than conventional high temperature sintering processes. Advanced technologies open up new possibilities in the design of bioceramics for bone regeneration; 3D-printing technologies, in combination with the development of hybrid materials with enhanced mechanical properties, supported by finite element modelling tools, are expected to enable the design and fabrication of mechanically competent patient-specific bone grafts. The association of ions, drugs and cells allows leveraging of the osteogenic potential of bioceramic scaffolds in compromised clinical situations, where the intrinsic bone regeneration potential is impaired.
引用
收藏
页码:173 / 183
页数:11
相关论文
共 85 条
[1]  
Albee FH, 1920, ANN SURG, V71, P32
[2]   The relevance of biomaterials to the prevention and treatment of osteoporosis [J].
Arcos, D. ;
Boccaccini, A. R. ;
Bohner, M. ;
Diez-Perez, A. ;
Epple, M. ;
Gomez-Barrena, E. ;
Herrera, A. ;
Planell, J. A. ;
Rodriguez-Manas, L. ;
Vallet-Regi, M. .
ACTA BIOMATERIALIA, 2014, 10 (05) :1793-1805
[3]   Bone regeneration and stem cells [J].
Arvidson, K. ;
Abdallah, B. M. ;
Applegate, L. A. ;
Baldini, N. ;
Cenni, E. ;
Gomez-Barrena, E. ;
Granchi, D. ;
Kassem, M. ;
Konttinen, Y. T. ;
Mustafa, K. ;
Pioletti, D. P. ;
Sillat, T. ;
Finne-Wistrand, A. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2011, 15 (04) :718-746
[4]   Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture [J].
Barba, Albert ;
Diez-Escudero, Anna ;
Maazouz, Yassine ;
Rappe, Katrin ;
Espanol, Montserrat ;
Montufar, Edgar B. ;
Bonany, Mar ;
Sadowska, Joanna M. ;
Guillern-Marti, Jordi ;
Ohman-Magi, Caroline ;
Persson, Cecilia ;
Manzanares, Maria-Cristina ;
Franch, Jordi ;
Ginebra, Maria-Pau .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) :41722-41736
[5]   OSTEOINDUCTIVE BIOMATERIALS: CURRENT KNOWLEDGE OF PROPERTIES, EXPERIMENTAL MODELS AND BIOLOGICAL MECHANISMS [J].
Barradas, Ana M. C. ;
Yuan, Huipin ;
van Blitterswijk, Clemens A. ;
Habibovic, Pamela .
EUROPEAN CELLS & MATERIALS, 2011, 21 :407-429
[6]  
Barrère F, 2006, INT J NANOMED, V1, P317
[7]   Stem cells in tissue engineering [J].
Bianco, P ;
Robey, PG .
NATURE, 2001, 414 (6859) :118-121
[8]  
Bigi A., 2016, BIOMINERALIZATION BI, P235
[9]   Ionic substitutions in calcium phosphates synthesized at low temperature [J].
Boanini, E. ;
Gazzano, M. ;
Bigi, A. .
ACTA BIOMATERIALIA, 2010, 6 (06) :1882-1894
[10]   Calcium phosphate bone graft substitutes: Failures and hopes [J].
Bohner, Marc ;
Galea, Laetitia ;
Doebelin, Nicola .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (11) :2663-2671