Control of defect-mediated turbulence in the complex Ginzburg-Landau equation via ordered waves

被引:24
|
作者
He, Xiaoyi
Zhang, Hong [1 ]
Hu, Bambi
Cao, Zhoujian
Zheng, Bo
Hu, Gang
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Coll Life Sci, Hangzhou 310027, Peoples R China
[4] Hong Kong Baptist Univ, Dept Phys, Ctr Nonlinear Studies, Hong Kong, Hong Kong, Peoples R China
[5] Hong Kong Baptist Univ, Beijing Hong Kong Singapore Joint Ctr Nonlinear &, Hong Kong, Hong Kong, Peoples R China
[6] Univ Houston, Dept Phys, Houston, TX 77204 USA
[7] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[8] Beijing Normal Univ, Beijing Hong Kong Singapore Joint Ctr Nonlinear &, Beijing 100875, Peoples R China
[9] CCAST, World Lab, Beijing 8730, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2007年 / 9卷
关键词
D O I
10.1088/1367-2630/9/3/066
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Here, we study the local control of defect-mediated turbulence or spiral turbulence via ordered waves in the two- (2D) and three-dimensional (3D) complex Ginzburg - Landau equation (CGLE) systems. Depending on the local oscillating frequency resulting from the external periodic injection or the localized inhomogeneity, either spiral waves or target waves could be generated and they may successfully suppress the turbulent waves in the CGLE systems. Theoretical analysis combined with numerical analysis is given to reveal the underlying mechanism.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Controlling turbulence in the complex Ginzburg-Landau equation
    Xiao, JH
    Hu, G
    Yang, JZ
    Gao, JH
    PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5552 - 5555
  • [2] Taming turbulence in the complex Ginzburg-Landau equation
    Zhan, Meng
    Zou, Wei
    Liu, Xu
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [4] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [5] Controlling turbulence in the complex Ginzburg-Landau equation
    Battogtokh, D
    Mikhailov, A
    PHYSICA D, 1996, 90 (1-2): : 84 - 95
  • [6] Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation
    J. B. Gonpe Tafo
    L. Nana
    T. C. Kofane
    The European Physical Journal Plus, 127
  • [7] Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation
    Tafo, J. B. Gonpe
    Nana, L.
    Kofane, T. C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2012, 127 (07):
  • [8] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [9] Target waves in the complex Ginzburg-Landau equation
    Hendrey, M
    Nam, K
    Guzdar, P
    Ott, E
    PHYSICAL REVIEW E, 2000, 62 (06): : 7627 - 7631
  • [10] Standing waves of the complex Ginzburg-Landau equation
    Cazenave, Thierry
    Dickstein, Flavio
    Weissler, Fred B.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 103 : 26 - 32