INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM INVOLVING HARDY POTENTIAL
被引:0
作者:
Zhang, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Inner Mongolia Normal Univ, Math Sci Coll, Hohhot 010022, Peoples R ChinaInner Mongolia Normal Univ, Math Sci Coll, Hohhot 010022, Peoples R China
Zhang, Jing
[1
]
Ma, Shiwang
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaInner Mongolia Normal Univ, Math Sci Coll, Hohhot 010022, Peoples R China
Ma, Shiwang
[2
,3
]
机构:
[1] Inner Mongolia Normal Univ, Math Sci Coll, Hohhot 010022, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
In this article, we give a new proof on the existence of infinitely many sign changing solutions for the following Brezis-Nirenberg problem with critical exponent and a Hardy potential -Delta u - mu u/vertical bar x vertical bar(2) = lambda u + vertical bar u vertical bar(2*-2)u in Omega, u = 0 on partial derivative Omega, where Omega is a smooth open bounded domain of R-N which contains the origin, 2* =2N/N-2 is the critical Sobolev exponent. More precisely, under the assumptions that N >= 7, mu [0, (mu) over bar - 4), and (mu) over bar = (N-2)(2)/4, we show that the problem admits infinitely many sign-changing solutions for each fixed lambda > 0. Our proof is based on a combination of invariant sets method and Ljusternik-Schnirelman theory.
引用
收藏
页码:527 / 536
页数:10
相关论文
共 19 条
[1]
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]
[Anonymous], 2000, Variational methods
[3]
Atkinson F V, 1997, J DIFFER EQUATIONS, V134, P1
机构:
Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Chinese Acad Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Cao, Daomin
Peng, Shuangjie
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Peng, Shuangjie
Yan, Shusen
论文数: 0引用数: 0
h-index: 0
机构:
Univ New England, Dept Math, Armidale, NSW 2351, AustraliaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
机构:
Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Chinese Acad Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Cao, Daomin
Yan, Shusen
论文数: 0引用数: 0
h-index: 0
机构:
Univ New England, Dept Math, Armidale, NSW 2351, AustraliaChinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Chinese Acad Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Cao, Daomin
Peng, Shuangjie
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Peng, Shuangjie
Yan, Shusen
论文数: 0引用数: 0
h-index: 0
机构:
Univ New England, Dept Math, Armidale, NSW 2351, AustraliaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
机构:
Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Chinese Acad Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Cao, Daomin
Yan, Shusen
论文数: 0引用数: 0
h-index: 0
机构:
Univ New England, Dept Math, Armidale, NSW 2351, AustraliaChinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China