Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier

被引:0
|
作者
Ghezelayagh, H [1 ]
Lee, KY [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
来源
CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2002年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An intelligent predictive controller is implemented to control a fossil fuel power unit. This controller is a non-model based system that uses a self-organized neuro-fuzzy identifier to predict the response of the plant in a future time interval. The control inputs are optimized in this prediction horizon by Evolutionary Programming (EP) to minimize the error of identifier outputs and reference set points. The identifier performs automatic rule generation and membership function tuning by Genetic Algorithm (GA) and error back-propagation methods, respectively. This intelligent system provides a predictive control of multi-input multi-output nonlinear systems with slow time variation.
引用
收藏
页码:1308 / 1313
页数:6
相关论文
共 50 条
  • [41] Evolutionary Learning of Flexible Neuro-Fuzzy Systems
    Cpalka, Krzysztof
    Rutkowski, Leszek
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 969 - 975
  • [42] FuzzyCLIPS and neuro-fuzzy term rewriting for power network control
    Morris, A
    Steele, A
    2002 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY PROCEEDINGS, 2002, : 566 - 571
  • [43] Intuitionistic neuro-fuzzy network with evolutionary adaptation
    Hájek P.
    Olej V.
    Hájek, Petr (Petr.Hajek@upce.cz), 2017, Springer Verlag (08) : 35 - 47
  • [44] A NEURO-FUZZY EMBEDDED SYSTEM FOR INTELLIGENT ENVIRONMENTS
    Echanobe, Javier
    del Campo, Ines
    Bosque, Guillermo
    IJCCI 2009: PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2009, : 559 - 564
  • [45] Neuro-fuzzy modelling of power plant flue-gas emissions
    Ikonen, E
    Najim, K
    Kortela, U
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2000, 13 (06) : 705 - 717
  • [46] An efficient Neuro-Fuzzy approach to nuclear power plant transient identification
    da Costa, Rafael Gomes
    de Abreu Mol, Antonio Carlos
    de Carvalho, Paulo Victor R.
    Franklin Lapa, Celso Marcelo
    ANNALS OF NUCLEAR ENERGY, 2011, 38 (06) : 1418 - 1426
  • [47] Control of Inverted Pendulum System Using a Neuro-Fuzzy Controller for Intelligent Control Education
    Lee, Geun Hyeong
    Jung, Seul
    2008 INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION: (ICMA), VOLS 1 AND 2, 2008, : 964 - 969
  • [48] Features of building a predictive neuro-fuzzy network
    Epikhin, Alexey, I
    Khekert, Evgeniy, V
    Karakaev, Alexander B.
    Modina, Marina A.
    MARINE INTELLECTUAL TECHNOLOGIES, 2020, (04): : 13 - 17
  • [49] Fuzzy and neuro-fuzzy techniques for modelling and control
    Lee, S. H.
    Howlett, R. J.
    Walters, S. D.
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2006, 4251 : 1206 - 1215
  • [50] A Neuro-Fuzzy Application to Power System
    Haidar, Ahmed M. A.
    Mohamed, Azah
    Jaalam, Norazila
    Khalidin, Zulkeflee
    Kamali, M. S.
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (IACSIT ICMLC 2009), 2009, : 131 - 135