Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data

被引:22
作者
Pereira-Flores, Emiliano [1 ,2 ]
Gloeckner, Frank Oliver [1 ,3 ]
Fernandez-Guerra, Antonio [1 ,2 ,4 ]
机构
[1] Max Planck Inst Marine Microbiol, Microbial Genom & Bioinformat Res Grp, Celsiusstr 1, D-28359 Bremen, Germany
[2] Jacobs Univ Bremen gGmbH, Dept Life Sci & Chem, Campus Ring 1, D-28759 Bremen, Germany
[3] Alfred Wegener Inst, Helmholtz Ctr Polar & Marine Res, Handelshafen 12, D-27570 Bremerhaven, Germany
[4] Univ Oxford, Oxford E Res Ctr, Oxford OX1 3QG, England
关键词
Microbial ecology; Metagenomics; Functional traits; Average genome size; 16S rRNA gene average copy number; MICROBES; BACTERIA; ECOLOGY; TOOLS; SEA;
D O I
10.1186/s12859-019-3031-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Metagenomics caused a quantum leap in microbial ecology. However, the inherent size and complexity of metagenomic data limit its interpretation. The quantification of metagenomic traits in metagenomic analysis workflows has the potential to improve the exploitation of metagenomic data. Metagenomic traits are organisms' characteristics linked to their performance. They are measured at the genomic level taking a random sample of individuals in a community. As such, these traits provide valuable information to uncover microorganisms' ecological patterns. The Average Genome Size (AGS) and the 16S rRNA gene Average Copy Number (ACN) are two highly informative metagenomic traits that reflect microorganisms' ecological strategies as well as the environmental conditions they inhabit. Results: Here, we present the ags.sh and acn.sh tools, which analytically derive the AGS and ACN metagenomic traits. These tools represent an advance on previous approaches to compute the AGS and ACN traits. Benchmarking shows that ags.sh is up to 11 times faster than state-of-the-art tools dedicated to the estimation AGS. Both ags.sh and acn.sh show comparable or higher accuracy than existing tools used to estimate these traits. To exemplify the applicability of both tools, we analyzed the 139 prokaryotic metagenomes of TARA Oceans and revealed the ecological strategies associated with different water layers. Conclusion: We took advantage of recent advances in gene annotation to develop the ags.sh and acn.sh tools to combine easy tool usage with fast and accurate performance. Our tools compute the AGS and ACN metagenomic traits on unassembled metagenomes and allow researchers to improve their metagenomic data analysis to gain deeper insights into microorganisms' ecology. The ags.sh and acn.sh tools are publicly available using Docker container technology at https://github.com/pereiramemo/AGS-and-ACN-tools.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation [J].
O'Leary, Nuala A. ;
Wright, Mathew W. ;
Brister, J. Rodney ;
Ciufo, Stacy ;
McVeigh, Diana Haddad Rich ;
Rajput, Bhanu ;
Robbertse, Barbara ;
Smith-White, Brian ;
Ako-Adjei, Danso ;
Astashyn, Alexander ;
Badretdin, Azat ;
Bao, Yiming ;
Blinkova, Olga ;
Brover, Vyacheslav ;
Chetvernin, Vyacheslav ;
Choi, Jinna ;
Cox, Eric ;
Ermolaeva, Olga ;
Farrell, Catherine M. ;
Goldfarb, Tamara ;
Gupta, Tripti ;
Haft, Daniel ;
Hatcher, Eneida ;
Hlavina, Wratko ;
Joardar, Vinita S. ;
Kodali, Vamsi K. ;
Li, Wenjun ;
Maglott, Donna ;
Masterson, Patrick ;
McGarvey, Kelly M. ;
Murphy, Michael R. ;
O'Neill, Kathleen ;
Pujar, Shashikant ;
Rangwala, Sanjida H. ;
Rausch, Daniel ;
Riddick, Lillian D. ;
Schoch, Conrad ;
Shkeda, Andrei ;
Storz, Susan S. ;
Sun, Hanzhen ;
Thibaud-Nissen, Francoise ;
Tolstoy, Igor ;
Tully, Raymond E. ;
Vatsan, Anjana R. ;
Wallin, Craig ;
Webb, David ;
Wu, Wendy ;
Landrum, Melissa J. ;
Kimchi, Avi ;
Tatusova, Tatiana .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D733-D745
[32]  
Oksanen J, 2022, R package version 2.6-4, DOI DOI 10.4135/9781412971874.N145
[33]   Shotgun metagenomics, from sampling to analysis (35, pg 833, 2017) [J].
Quince, Christopher ;
Walker, Alan W. ;
Simpson, Jared T. ;
Loman, Nicholas J. ;
Segata, Nicola .
NATURE BIOTECHNOLOGY, 2017, 35 (09) :833-844
[34]   Prediction of effective genome size in metagenomic samples [J].
Raes, Jeroen ;
Korbel, Jan O. ;
Lercher, Martin J. ;
von Mering, Christian ;
Bork, Peer .
GENOME BIOLOGY, 2007, 8 (01)
[35]   Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data [J].
Raes, Jeroen ;
Letunic, Ivica ;
Yamada, Takuji ;
Jensen, Lars Juhl ;
Bork, Peer .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[36]   Clostridium paradoxum DSM 7308(T) contains multiple 16S rRNA genes with heterogeneous intervening sequences [J].
Rainey, FA ;
WardRainey, NL ;
Janssen, PH ;
Hippe, H ;
Stackebrandt, E .
MICROBIOLOGY-UK, 1996, 142 :2087-2095
[37]   FragGeneScan: predicting genes in short and error-prone reads [J].
Rho, Mina ;
Tang, Haixu ;
Ye, Yuzhen .
NUCLEIC ACIDS RESEARCH, 2010, 38 (20) :e191
[38]   MetaSim-A Sequencing Simulator for Genomics and Metagenomics [J].
Richter, Daniel C. ;
Ott, Felix ;
Auch, Alexander F. ;
Schmid, Ramona ;
Huson, Daniel H. .
PLOS ONE, 2008, 3 (10)
[39]   VSEARCH: a versatile open source tool for metagenomics [J].
Rognes, Torbjorn ;
Flouri, Tomas ;
Nichols, Ben ;
Quince, Christopher ;
Mahe, Frederic .
PEERJ, 2016, 4
[40]  
Roller BRK, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.160, 10.1038/nmicrobiol.2016.160]