Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data

被引:22
作者
Pereira-Flores, Emiliano [1 ,2 ]
Gloeckner, Frank Oliver [1 ,3 ]
Fernandez-Guerra, Antonio [1 ,2 ,4 ]
机构
[1] Max Planck Inst Marine Microbiol, Microbial Genom & Bioinformat Res Grp, Celsiusstr 1, D-28359 Bremen, Germany
[2] Jacobs Univ Bremen gGmbH, Dept Life Sci & Chem, Campus Ring 1, D-28759 Bremen, Germany
[3] Alfred Wegener Inst, Helmholtz Ctr Polar & Marine Res, Handelshafen 12, D-27570 Bremerhaven, Germany
[4] Univ Oxford, Oxford E Res Ctr, Oxford OX1 3QG, England
关键词
Microbial ecology; Metagenomics; Functional traits; Average genome size; 16S rRNA gene average copy number; MICROBES; BACTERIA; ECOLOGY; TOOLS; SEA;
D O I
10.1186/s12859-019-3031-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Metagenomics caused a quantum leap in microbial ecology. However, the inherent size and complexity of metagenomic data limit its interpretation. The quantification of metagenomic traits in metagenomic analysis workflows has the potential to improve the exploitation of metagenomic data. Metagenomic traits are organisms' characteristics linked to their performance. They are measured at the genomic level taking a random sample of individuals in a community. As such, these traits provide valuable information to uncover microorganisms' ecological patterns. The Average Genome Size (AGS) and the 16S rRNA gene Average Copy Number (ACN) are two highly informative metagenomic traits that reflect microorganisms' ecological strategies as well as the environmental conditions they inhabit. Results: Here, we present the ags.sh and acn.sh tools, which analytically derive the AGS and ACN metagenomic traits. These tools represent an advance on previous approaches to compute the AGS and ACN traits. Benchmarking shows that ags.sh is up to 11 times faster than state-of-the-art tools dedicated to the estimation AGS. Both ags.sh and acn.sh show comparable or higher accuracy than existing tools used to estimate these traits. To exemplify the applicability of both tools, we analyzed the 139 prokaryotic metagenomes of TARA Oceans and revealed the ecological strategies associated with different water layers. Conclusion: We took advantage of recent advances in gene annotation to develop the ags.sh and acn.sh tools to combine easy tool usage with fast and accurate performance. Our tools compute the AGS and ACN metagenomic traits on unassembled metagenomes and allow researchers to improve their metagenomic data analysis to gain deeper insights into microorganisms' ecology. The ags.sh and acn.sh tools are publicly available using Docker container technology at https://github.com/pereiramemo/AGS-and-ACN-tools.
引用
收藏
页数:13
相关论文
共 50 条
[1]   CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction [J].
Angly, Florent E. ;
Dennis, Paul G. ;
Skarshewski, Adam ;
Vanwonterghem, Inka ;
Hugenholtz, Philip ;
Tyson, Gene W. .
MICROBIOME, 2014, 2
[2]   The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes [J].
Angly, Florent E. ;
Willner, Dana ;
Prieto-Davo, Alejandra ;
Edwards, Robert A. ;
Schmieder, Robert ;
Vega-Thurber, Rebecca ;
Antonopoulos, Dionysios A. ;
Barott, Katie ;
Cottrell, Matthew T. ;
Desnues, Christelle ;
Dinsdale, Elizabeth A. ;
Furlan, Mike ;
Haynes, Matthew ;
Henn, Matthew R. ;
Hu, Yongfei ;
Kirchman, David L. ;
McDole, Tracey ;
McPherson, John D. ;
Meyer, Folker ;
Miller, R. Michael ;
Mundt, Egbert ;
Naviaux, Robert K. ;
Rodriguez-Mueller, Beltran ;
Stevens, Rick ;
Wegley, Linda ;
Zhang, Lixin ;
Zhu, Baoli ;
Rohwer, Forest .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (12)
[3]   Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria [J].
Barberan, Albert ;
Ramirez, Kelly S. ;
Leff, Jonathan W. ;
Bradford, Mark A. ;
Wall, Diana H. ;
Fierer, Noah .
ECOLOGY LETTERS, 2014, 17 (07) :794-802
[4]   Exploration of community traits as ecological markers in microbial metagenomes [J].
Barberan, Albert ;
Fernandez-Guerra, Antoni ;
Bohannan, Brendan J. M. ;
Casamayor, Emilio O. .
MOLECULAR ECOLOGY, 2012, 21 (08) :1909-1917
[5]   A Model of Genome Size Evolution for Prokaryotes in Stable and Fluctuating Environments [J].
Bentkowski, Piotr ;
Van Oosterhout, Cock ;
Mock, Thomas .
GENOME BIOLOGY AND EVOLUTION, 2015, 7 (08) :2344-2351
[6]   Average genome size: a potential source of bias in comparative metagenomics [J].
Beszteri, Bank ;
Temperton, Ben ;
Frickenhaus, Stephan ;
Giovannoni, Stephen J. .
ISME JOURNAL, 2010, 4 (08) :1075-1077
[7]   Microbial Communities Can Be Described by Metabolic Structure: A General Framework and Application to a Seasonally Variable, Depth-Stratified Microbial Community from the Coastal West Antarctic Peninsula [J].
Bowman, Jeff S. ;
Ducklow, Hugh W. .
PLOS ONE, 2015, 10 (08)
[8]   BLAST plus : architecture and applications [J].
Camacho, Christiam ;
Coulouris, George ;
Avagyan, Vahram ;
Ma, Ning ;
Papadopoulos, Jason ;
Bealer, Kevin ;
Madden, Thomas L. .
BMC BIOINFORMATICS, 2009, 10
[9]   Seeing the forest for the genes: using rnetagenomics to infer the aggregated traits of microbial communities [J].
Fierer, Noah ;
Barberan, Albert ;
Laughlin, Daniel C. .
FRONTIERS IN MICROBIOLOGY, 2014, 5
[10]   Microbial Metagenomics: Beyond the Genome [J].
Gilbert, Jack A. ;
Dupont, Christopher L. .
ANNUAL REVIEW OF MARINE SCIENCE, VOL 3, 2011, 3 :347-371