Speech Signal Classification Based on Convolutional Neural Networks

被引:0
|
作者
Zhang, Xiaomeng [1 ]
Sun, Hao [1 ]
Wang, Shuopeng [1 ]
Xu, Jing [1 ]
机构
[1] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300130, Peoples R China
来源
COGNITIVE SYSTEMS AND SIGNAL PROCESSING, PT II | 2019年 / 1006卷
关键词
Speech signal classification; Spectrogram; Convolutional neural networks; IMPLEMENTATION;
D O I
10.1007/978-981-13-7986-4_25
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the field of intelligent human-computer interaction, speech signal is the hotspot research field, and has been widely used. For the traditional classification algorithm, the computational complexity is high and the classification accuracy is low. This paper proposes a convolutional neural network based on convolutional neural network. The speech signal classification method converts the speech signal into a form of a spectrogram and inputs it into a convolutional neural network to realize classification of the speech signal. Finally, the training and testing of convolutional neural networks are completed by using the framework of tensorflow. Compared with the traditional classification algorithm, the accuracy of the classification algorithm proposed in this paper reaches about 98%. The results show the feasibility and effectiveness of the experimental method.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 50 条
  • [1] CONVOLUTIONAL NEURAL NETWORKS-BASED CONTINUOUS SPEECH RECOGNITION USING RAW SPEECH SIGNAL
    Palaz, Dimitri
    Magimai-Doss, Mathew
    Collobert, Ronan
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4295 - 4299
  • [2] Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks
    Sharan, Roneel, V
    Xiong, Hao
    Berkovsky, Shlomo
    SENSORS, 2021, 21 (10)
  • [3] Classification of Vowels from Imagined Speech with Convolutional Neural Networks
    Tamm, Markus-Oliver
    Muhammad, Yar
    Muhammad, Naveed
    COMPUTERS, 2020, 9 (02)
  • [4] Ship classification based on convolutional neural networks
    Li Zhenzhen
    Zhao Baojun
    Tang Linbo
    Li Zhen
    Feng Fan
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7343 - 7346
  • [5] Waveforms classification based on convolutional neural networks
    Zhao, Bendong
    Xiao, Shanzhu
    Lu, Huanzhang
    Liu, Junliang
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 162 - 165
  • [6] ECG signal classification using Convolutional Neural Networks for Biometric Identification
    Cordos, Claudia
    Mihaila, Laura
    Farago, Paul
    Hintea, Sorin
    2021 44TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2021, : 167 - 170
  • [7] Atrial fibrillation classification based on convolutional neural networks
    Lee, Kwang-Sig
    Jung, Sunghoon
    Gil, Yeongjoon
    Son, Ho Sung
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [8] Convolutional Neural Networks based Pornographic Image Classification
    Zhou, KaiLong
    Zhou, Li
    Geng, Zhen
    Zhang, Jing
    Li, Xiao Guang
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 206 - 209
  • [9] Material classification technology based on Convolutional neural networks
    Li, Dailin
    Li, Guilei
    Wei, Baojun
    Yang, Dan
    Wang, Ning
    Zhu, Huafeng
    Ni, Hao
    FIFTH SYMPOSIUM ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2019, 11023
  • [10] Atrial fibrillation classification based on convolutional neural networks
    Kwang-Sig Lee
    Sunghoon Jung
    Yeongjoon Gil
    Ho Sung Son
    BMC Medical Informatics and Decision Making, 19