Efficient registration of 3D SPHARM surfaces

被引:24
作者
Shen, Li [1 ]
Huang, Heng [2 ]
Makedon, Fillia [2 ]
Saykin, Andrew J. [3 ]
机构
[1] Univ Massachusetts, 286 Old Westport Rd, N Dartmouth, MA 02747 USA
[2] Univ Texas Arlington, Comp Sci & Engn, Arlington, TX 76019 USA
[3] Indiana Univ Sch Med, Ctr Neuroimaging, Dept Radiol, Div Imaging Sci, Indianapolis, IN 46202 USA
来源
FOURTH CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION, PROCEEDINGS | 2007年
关键词
D O I
10.1109/CRV.2007.26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present SHREC, an efficient algorithm for registration of 3D SPHARM (spherical harmonic) surfaces. SHREC follows the iterative closest point (ICP) registration strategy, and alternately improves the surface correspondence and adjusts the object pose. It establishes the surface correspondence by aligning the underlying SPHARM parameterization. It employs a rotational property of the harmonic expansion to accelerate its step for parameterization rotation. It uses a hierarchical icosahedron approach to sample the rotation space and searches for the best parameterization that matches the template. Our experimental results show that SHREC can not only create more accurate registration than previous methods but also do it efficiently. SHREC is a simple, efficient and general registration method, and has a great potential to be used in many shape modeling and analysis applications.
引用
收藏
页码:81 / +
页数:2
相关论文
共 28 条
  • [1] Ballard D.H., 1982, Computer Vision
  • [2] A METHOD FOR REGISTRATION OF 3-D SHAPES
    BESL, PJ
    MCKAY, ND
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) : 239 - 256
  • [3] PARAMETRIZATION OF CLOSED SURFACES FOR 3-D SHAPE-DESCRIPTION
    BRECHBUHLER, C
    GERIG, G
    KUBLER, O
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 1995, 61 (02) : 154 - 170
  • [4] Spherical diffusion for 3D surface smoothing
    Bülow, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (12) : 1650 - 1654
  • [5] Determination of the orientation of 3D objects using spherical harmonics
    Burel, G
    Henocq, H
    [J]. GRAPHICAL MODELS AND IMAGE PROCESSING, 1995, 57 (05): : 400 - 408
  • [6] Protein-ligand recognition using spherical harmonic molecular surfaces: towards a fast and efficient filter for large virtual throughput screening
    Cai, WS
    Shao, XG
    Maigret, B
    [J]. JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2002, 20 (04) : 313 - 328
  • [7] Cortical thickness analysis in autism with heat kernel smoothing
    Chung, MK
    Robbins, SM
    Dalton, KM
    Davidson, RJ
    Alexander, AL
    Evans, AC
    [J]. NEUROIMAGE, 2005, 25 (04) : 1256 - 1265
  • [8] Chung MK, 2006, LECT NOTES COMPUT SC, V4091, P36
  • [9] Floater M S, 2004, MULTIRESOLUTION GEOM
  • [10] A search engine for 3D models
    Funkhouser, T
    Min, P
    Kazhdan, M
    Chen, J
    Halderman, A
    Dobkin, D
    Jacobs, D
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (01): : 83 - 105