Transitive permutation groups where nontrivial elements have at most two fixed points

被引:9
作者
Magaard, Kay [1 ]
Waldecker, Rebecca [2 ]
机构
[1] Univ Birmingham, Birmingham B15 2TT, W Midlands, England
[2] Univ Halle Wittenberg, D-06099 Halle, Saale, Germany
关键词
FINITE-GROUPS; AUTOMORPHISM; ORDER; ODD;
D O I
10.1016/j.jpaa.2014.04.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by a question on Riemann surfaces, we consider permutation groups that act nonregularly, such that every nontrivial element has at most two fixed points. We describe the permutation groups with these properties and give a complete, detailed classification when the group is simple. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:729 / 759
页数:31
相关论文
共 26 条
[1]  
ALPERIN JL, 1970, T AM MATH SOC, V151, P1
[2]   On Bol loops of exponent 2 [J].
Aschbacher, M .
JOURNAL OF ALGEBRA, 2005, 288 (01) :99-136
[3]   TRANSITIVE GROUP OF EVEN ORDER, WHEREIN EACH INVOLUTION FIXES EXACTLY ONE POINT [J].
BENDER, H .
JOURNAL OF ALGEBRA, 1971, 17 (04) :527-&
[4]  
Bender H., 1996, GROUP THEORY ALGEBRA, P97
[5]   ON FINITE GROUPS OF EVEN ORDER WHOSE 2-SYLOW GROUP IS A QUATERNION GROUP [J].
BRAUER, R ;
SUZUKI, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1959, 45 (12) :1757-1759
[6]   FINITE-GROUPS ADMITTING AN AUTOMORPHISM WITH 2 FIXED-POINTS [J].
COLLINS, MJ ;
RICKMAN, B .
JOURNAL OF ALGEBRA, 1977, 49 (02) :547-563
[7]  
Conway J.H., 2003, ATLAS FINITE GROUPS
[8]  
Farkas H., 1992, Riemann Surfaces
[9]   SOLVABILITY OF GROUPS OF ODD ORDER [J].
FEIT, W ;
THOMPSON, JG .
PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (03) :775-&
[10]   FINITE-GROUPS ADMITTING AN AUTOMORPHISM OF PRIME-ORDER FIXING AN ABELIAN 2-GROUP [J].
FUKUSHIMA, H .
JOURNAL OF ALGEBRA, 1984, 89 (01) :1-23