Towards a derivation of fourier's law for coupled anharmonic oscillators

被引:45
作者
Bricmont, Jean
Kupiainen, Antti
机构
[1] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
[2] Catholic Univ Louvain, FYMA, B-1348 Louvain, Belgium
关键词
D O I
10.1007/s00220-007-0284-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a Hamiltonian system made of weakly coupled anharmonic oscillators arranged on a three dimensional lattice Z(2n) x Z(2), and subjected to stochastic forcing mimicking heat baths of temperatures T-1 and T-2 on the hyperplanes at O and N. We introduce a truncation of the Hopf equations describing the stationary state of the system which leads to a nonlinear equation for the two-point stationary correlation functions. We prove that these equations have a unique solution which, for N large, is approximately a local equilibrium state satisfying Fourier law that relates the heat current to a local temperature gradient. The temperature exhibits a nonlinear profile.
引用
收藏
页码:555 / 626
页数:72
相关论文
共 34 条
[21]   Normal heat conductivity in a strongly pinned chain of anharmonic oscillators [J].
Lefevere, R ;
Schenkel, A .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
[22]   Thermal conduction in classical low-dimensional lattices [J].
Lepri, S ;
Livi, R ;
Politi, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 377 (01) :1-80
[23]   On the anomalous thermal conductivity of one-dimensional lattices [J].
Lepri, S ;
Livi, R ;
Politi, A .
EUROPHYSICS LETTERS, 1998, 43 (03) :271-276
[24]   Anomalous heat conduction in one-dimensional momentum-conserving systems [J].
Narayan, O ;
Ramaswamy, S .
PHYSICAL REVIEW LETTERS, 2002, 89 (20)
[25]   Fermi-Pasta-Ulam β lattice:: Peierls equation and anomalous heat conductivity -: art. no. 056124 [J].
Pereverzev, A .
PHYSICAL REVIEW E, 2003, 68 (05)
[26]   Exponential convergence to non-equilibrium stationary states in classical statistical mechanics [J].
Rey-Bellet, L ;
Thomas, LE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (02) :305-329
[27]   Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators [J].
Rey-Bellet, L ;
Thomas, LE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :1-24
[28]  
REYBELLET L, 2006, 14 INT C MATH PHYS
[29]   PROPERTIES OF A HARMONIC CRYSTAL IN A STATIONARY NONEQUILIBRIUM STATE [J].
RIEDER, Z ;
LEBOWITZ, JL ;
LIEB, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (05) :1073-+
[30]   STATIONARY NONEQUILIBRIUM STATES OF INFINITE HARMONIC SYSTEMS [J].
SPOHN, H ;
LEBOWITZ, JL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 54 (02) :97-120