Towards a derivation of fourier's law for coupled anharmonic oscillators

被引:45
作者
Bricmont, Jean
Kupiainen, Antti
机构
[1] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
[2] Catholic Univ Louvain, FYMA, B-1348 Louvain, Belgium
关键词
D O I
10.1007/s00220-007-0284-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a Hamiltonian system made of weakly coupled anharmonic oscillators arranged on a three dimensional lattice Z(2n) x Z(2), and subjected to stochastic forcing mimicking heat baths of temperatures T-1 and T-2 on the hyperplanes at O and N. We introduce a truncation of the Hopf equations describing the stationary state of the system which leads to a nonlinear equation for the two-point stationary correlation functions. We prove that these equations have a unique solution which, for N large, is approximately a local equilibrium state satisfying Fourier law that relates the heat current to a local temperature gradient. The temperature exhibits a nonlinear profile.
引用
收藏
页码:555 / 626
页数:72
相关论文
共 34 条
[1]   Nonequilibrium statistical mechanics of classical lattice φ4 field theory [J].
Aoki, K ;
Kusnezov, D .
ANNALS OF PHYSICS, 2002, 295 (01) :50-80
[2]   Energy transport in weakly anharmonic chains [J].
Aoki, Kenichiro ;
Lukkarinen, Jani ;
Spohn, Herbert .
JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (05) :1105-1129
[3]  
BASILE G, 2006, THERMAL CONDUCTIVITY
[4]   Momentum conserving model with anomalous thermal conductivity in low dimensional systems [J].
Basile, Giada ;
Bernardin, Cedric ;
Olla, Stefano .
PHYSICAL REVIEW LETTERS, 2006, 96 (20)
[5]   Fourier's law for a microscopic model of heat conduction [J].
Bernardin, C ;
Olla, S .
JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) :271-289
[6]   Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs [J].
Bonetto, F ;
Lebowitz, JL ;
Lukkarinen, J .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :783-813
[7]  
Bonetto F., 2000, MATH PHYS 2000, P128, DOI [DOI 10.1142/9781848160224_0008, 10.1142/9781848160224_0008.]
[8]   On relativistic collisional invariants [J].
Cercignani, C ;
Kremer, GM .
JOURNAL OF STATISTICAL PHYSICS, 1999, 96 (1-2) :439-445
[9]  
Eckmann J.-P., 2002, P INT C MATH, V3, P409
[10]   Temperature profiles in Hamiltonian heat conduction [J].
Eckmann, JP ;
Young, LS .
EUROPHYSICS LETTERS, 2004, 68 (06) :790-796