Visual Result Prediction in Electromagnetic Simulations Using Machine Learning

被引:10
作者
Karaosmanoglu, Bariscan [1 ]
Ergul, Ozgur [1 ]
机构
[1] Middle East Tech Univ, Dept Elect & Elect Engn, TR-06980 Ankara, Turkey
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2019年 / 18卷 / 11期
关键词
Integral equations; method of moments; multilevel fast multipole algorithm (MLFMA); machine learning algorithms;
D O I
10.1109/LAWP.2019.2939762
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we present a novel approach based on using convolutional neural networks (CNNs) to visually predict solutions of electromagnetic problems. CNN models are constructed and trained such that images of surface currents obtained at the early stages of an iterative solution can be used to predict images of the final (converged) solution. Numerical experiments demonstrate that the predicted images contain significantly better visual details than the corresponding input images. The developed approach and the constructed CNN models can provide visual information on the solution of a given problem using only a few iterations without performing the whole iterative solution.
引用
收藏
页码:2264 / 2266
页数:3
相关论文
共 8 条
[1]  
[Anonymous], MULTILEVEL FAST MULT
[2]  
[Anonymous], 2015, PROC CVPR IEEE
[3]  
[Anonymous], ADV NEURAL INFORM PR
[4]  
Chew W. C., 2001, Fast and Efficient Algorithms in Computational Electromagnetics
[5]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]  
King DB, 2015, ACS SYM SER, V1214, P1
[8]   Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [J].
Ledig, Christian ;
Theis, Lucas ;
Huszar, Ferenc ;
Caballero, Jose ;
Cunningham, Andrew ;
Acosta, Alejandro ;
Aitken, Andrew ;
Tejani, Alykhan ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :105-114