Joint Distribution of First-Passage Time and First-Passage Area of Certain Levy Processes

被引:5
作者
Abundo, Mario [1 ]
Furia, Sara [1 ]
机构
[1] Univ Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
关键词
First-passage time; First-passage area; Jump-diffusion; Levy process; 1ST PASSAGE TIMES; EXCHANGE;
D O I
10.1007/s11009-018-9677-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let be X(t) = x - mu t + sigma B-t - N-t a Levy process starting from x > 0, where mu >= 0, sigma >= 0, B-t is a standard BM, and N-t is a homogeneous Poisson process with intensity > 0, starting from zero. We study the joint distribution of the first-passage time below zero, tau(x), and the first-passage area, A(x), swept out by X till the time tau(x). In particular, we establish differential-difference equations with outer conditions for the Laplace transforms of tau(x) and A(x), and for their joint moments. In a special case (mu = sigma = 0), we show an algorithm to find recursively the moments E[tau(x)(m)A(x)(n)], for any integers m and n; moreover, we obtain the expected value of the time average of X till the time tau(x).
引用
收藏
页码:1283 / 1302
页数:20
相关论文
共 17 条
[1]  
Abundo M., 2013, OPEN APPL MATH J, V7, P18
[2]  
ABUNDO M, 2000, PROBAB MATH STAT-POL, V20, P399
[3]   On the Joint Distribution of First-passage Time and First-passage Area of Drifted Brownian Motion [J].
Abundo, Mario ;
Del Vescovo, Danilo .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) :985-996
[4]   On the First-Passage Area of a One-Dimensional Jump-Diffusion Process [J].
Abundo, Mario .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2013, 15 (01) :85-103
[5]  
[Anonymous], J APPL MATH STOCHAST
[6]   Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options [J].
Bates, DS .
REVIEW OF FINANCIAL STUDIES, 1996, 9 (01) :69-107
[7]   THE 1ST PASSAGE PROBLEM FOR A CONTINUOUS MARKOV PROCESS [J].
DARLING, DA ;
SIEGERT, AJF .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (04) :624-639
[8]  
Gihman I. I., 1972, Stochastic Differential Equations
[9]   A Monte Carlo Method for the Simulation of First Passage Times of Diffusion Processes [J].
Giraudo, Maria Teresa ;
Sacerdote, Laura ;
Zucca, Cristina .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2001, 3 (02) :215-231
[10]  
Hasminskij R. Z., 1980, STOCHASTIC STABILITY