Transport pathways from the Asian monsoon anticyclone to the stratosphere

被引:79
作者
Garny, Hella [1 ]
Randel, William J. [2 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[2] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
TROPICAL TROPOPAUSE LAYER; VOLCANIC AEROSOL LOAD; WATER-VAPOR; UPPER TROPOSPHERE; ACE-FTS; OZONE; PLUME; AIR; HYDROCARBONS;
D O I
10.5194/acp-16-2703-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Transport pathways of air originating in the upper-tropospheric Asian monsoon anticyclone are investigated based on three-dimensional trajectories. The Asian monsoon anticyclone emerges in response to persistent deep convection over India and southeast Asia in northern summer, and this convection is associated with rapid transport from the surface to the upper troposphere and possibly into the stratosphere. Here, we investigate the fate of air that originates within the upper-tropospheric anticyclone from the outflow of deep convection, using trajectories driven by ERA-interim reanalysis data. Calculations include isentropic estimates, plus fully three-dimensional results based on kinematic and diabatic transport calculations. Isentropic calculations show that air parcels are typically confined within the anticyclone for 10-20 days and spread over the tropical belt within a month of their initialization. However, only few parcels (3% at 360 K, 8% at 380 K) reach the extratropical stratosphere by isentropic transport. When considering vertical transport we find that 31% or 48% of the trajectories reach the stratosphere within 60 days when using vertical velocities or diabatic heating rates to calculate vertical transport, respectively. In both cases, most parcels that reach the stratosphere are transported upward within the anticyclone and enter the stratosphere in the tropics, typically 10-20 days after their initialization at 360 K. This suggests that trace gases, including pollutants, that are transported into the stratosphere via the Asian monsoon system are in a position to enter the tropical pipe and thus be transported into the deep stratosphere. Sensitivity calculations with respect to the initial altitude of the trajectories showed that air needs to be transported to levels of 360K or above by deep convection to likely (>= 50 %) reach the stratosphere through transport by the large-scale circulation.
引用
收藏
页码:2703 / 2718
页数:16
相关论文
共 47 条
  • [1] Ozone seasonality above the tropical tropopause: reconciling the Eulerian and Lagrangian perspectives of transport processes
    Abalos, M.
    Ploeger, F.
    Konopka, P.
    Randel, W. J.
    Serrano, E.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (21) : 10787 - 10794
  • [2] Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft
    Baker, A. K.
    Schuck, T. J.
    Slemr, F.
    van Velthoven, P.
    Zahn, A.
    Brenninkmeijer, C. A. M.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (02) : 503 - 518
  • [3] Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit
    Bergman, John W.
    Fierli, Federico
    Jensen, Eric J.
    Honomichl, Shawn
    Pan, Laura L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (06) : 2560 - 2575
  • [4] Seasonal differences of vertical-transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large-scale vertical ascent, and horizontal circulationes
    Bergman, John W.
    Jensen, Eric J.
    Pfister, Leonhard
    Yang, Qiong
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [5] Response to Comments on "Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport"
    Bourassa, Adam E.
    Robock, Alan
    Randel, William J.
    Deshler, Terry
    Rieger, Landon A.
    Lloyd, Nicholas D.
    Llewellyn, E. J.
    Degenstein, Douglas A.
    [J]. SCIENCE, 2013, 339 (6120)
  • [6] Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport
    Bourassa, Adam E.
    Robock, Alan
    Randel, William J.
    Deshler, Terry
    Rieger, Landon A.
    Lloyd, Nicholas D.
    Llewellyn, E. J.
    Degenstein, Douglas A.
    [J]. SCIENCE, 2012, 337 (6090) : 78 - 81
  • [7] The 2011 Nabro eruption, a SO2 plume height analysis using IASI measurements
    Clarisse, L.
    Coheur, P. -F.
    Theys, N.
    Hurtmans, D.
    Clerbaux, C.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (06) : 3095 - 3111
  • [8] Characterisation of a stratospheric sulfate plume from the Nabro volcano using a combination of passive satellite measurements in nadir and limb geometry
    de Vries, M. J. M. Penning
    Doerner, S.
    Pukite, J.
    Hoermann, C.
    Fromm, M. D.
    Wagner, T.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (15) : 8149 - 8163
  • [9] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597
  • [10] A mechanism for moistening the lower stratosphere involving the Asian summer monsoon
    Dethof, A
    O'Neill, A
    Slingo, JM
    Smit, HGJ
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1999, 125 (556) : 1079 - 1106