The threshold of a stochastic SIQS epidemic model

被引:43
作者
Zhang, Xiao-Bing [1 ,2 ]
Huo, Hai-Feng [1 ,2 ]
Xiang, Hong [2 ]
Shi, Qihong [2 ]
Li, Dungang [2 ]
机构
[1] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Gansu, Peoples R China
[2] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
关键词
Random perturbations; Ito's formula; The threshold; SIQS; STATIONARY DISTRIBUTION; STABILITY; SIR; EXTINCTION; PERSISTENCE; SYSTEM; SEIR;
D O I
10.1016/j.physa.2017.04.100
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present the threshold of a stochastic SIQS epidemic model which determines the extinction and persistence of the disease. Furthermore, we find that noise can suppress the disease outbreak. Numerical simulations are also carried out to confirm the analytical results. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:362 / 374
页数:13
相关论文
共 37 条
  • [1] Stability of epidemic model with time delays influenced by stochastic perturbations
    Beretta, E
    Kolmanovskii, V
    Shaikhet, L
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 45 (3-4) : 269 - 277
  • [2] A stochastic SIRS epidemic model with infectious force under intervention strategies
    Cai, Yongli
    Kang, Yun
    Banerjee, Malay
    Wang, Weiming
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7463 - 7502
  • [3] A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL
    Gray, A.
    Greenhalgh, D.
    Hu, L.
    Mao, X.
    Pan, J.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) : 876 - 902
  • [4] The SIS epidemic model with Markovian switching
    Gray, Alison
    Greenhalgh, David
    Mao, Xuerong
    Pan, Jiafeng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 496 - 516
  • [5] Stochastic SIRS model under regime switching
    Han, Zhixia
    Zhao, Jiandong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 352 - 364
  • [6] Effects of quarantine in six endemic models for infectious diseases
    Hethcote, H
    Ma, Z
    Liao, SB
    [J]. MATHEMATICAL BIOSCIENCES, 2002, 180 : 141 - 160
  • [7] An algorithmic introduction to numerical simulation of stochastic differential equations
    Higham, DJ
    [J]. SIAM REVIEW, 2001, 43 (03) : 525 - 546
  • [8] Ji C., 2011, MATH COMPUT SIMULATI, V45, P1747
  • [9] Threshold behaviour of a stochastic SIR model
    Ji, Chunyan
    Jiang, Daqing
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5067 - 5079
  • [10] Asymptotic behavior of global positive solution to a stochastic SIR model
    Jiang, Daqing
    Yu, Jiajia
    Ji, Chunyan
    Shi, Ningzhong
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) : 221 - 232