Numerical analysis of CO2 hydrate growth in a depleted natural gas hydrate formation with free water

被引:8
|
作者
Ahmad, Sheraz [1 ]
Li, Yiming [1 ]
Li, Xiangfang [1 ]
Xia, Wei [1 ]
Chen, Zeen [1 ]
Ullah, Naeem [2 ]
机构
[1] China Univ Petr, Coll Petr Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China
[2] China Univ Petr, Coll Safety & Ocean Engn, Beijing 102249, Peoples R China
来源
GREENHOUSE GASES-SCIENCE AND TECHNOLOGY | 2019年 / 9卷 / 06期
关键词
CO2; hydrates; sequestration; numerical simulation; CO2 phase transformation; CARBON-DIOXIDE; MATHEMATICAL-MODEL; POROUS-MEDIUM; INJECTION; METHANE; STORAGE; KINETICS; LEAKAGE; DECOMPOSITION; DISSOCIATION;
D O I
10.1002/ghg.1924
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A dynamically coupled mass, momentum, and heat transfer model was developed, which demonstrated the unstable behavior of CO2 movement inside porous sediment during high pressure injection and its transformation into solid hydrates. The presented mathematical model was solved using the implicit finite difference method, and through ordering the set of model equations, a complex integrated methodology could be established to analyze the CO2 hydrate nucleation procedure within P-T equilibrium conditions. The results showed that the intrinsic permeability factor of the porous sediment had great influence on the pressure distribution. At 10(-13) m(2) intrinsic permeability, the formation pressure distribution became stable at an early stage of the hydrate growth process and remained stable afterwards. The overall hydrate covered length was 320 m due to the massive hydrate growth rate. When intrinsic permeability was reduced to 10(-14) m(2), it showed delay in pressure distribution and the overall hydrate covered length shifts to up to 310 m due to the delay in pressure distribution. Whereas at a 10(-15) m(2) intrinsic permeability factor, there was significant delay in pressure distribution so the injection pressure was not fully distributed even after 30 days of the induction process, which squeezed the hydrate covered length to 130 m. This pressure distribution had direct correlation with other parameter variations during the hydrate growth process, such as temperature distribution, hydrate growth rate, CO2 velocity, CO2 density, CO2 and H2O saturation, CO2 permeability, and interface boundary movement speed. Hence, the pressure distribution inside hydrate-bearing sediment is the most dominant factor to enhance CO2 storage capacity but it does not give satisfactory results in extended formations. (c) 2019 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons, Ltd.
引用
收藏
页码:1181 / 1201
页数:21
相关论文
共 50 条
  • [41] Kinetics of the formation of CO2 hydrate on the surface of liquid CO2 droplet in water
    Shindo, Y
    Sakaki, K
    Fujioka, Y
    Komiyama, H
    ENERGY CONVERSION AND MANAGEMENT, 1996, 37 (04) : 485 - 489
  • [42] Study of CO2 hydrate formation on the surface of residue shell from dissociated CH4 hydrate
    Gui, Xia
    Li, Li
    ENERGY, 2024, 302
  • [43] Hydrate Formation during Transport of Natural Gas Containing Water and Impurities
    Kvamme, Bjorn
    Kuznetsova, Tatiana
    Bauman, Jordan Michael
    Sjoblom, Sara
    Kulkarni, Anuli Avinash
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2016, 61 (02) : 936 - 949
  • [44] Evaluation of 1,3-dioxolane in promoting CO2 hydrate kinetics and its significance in hydrate-based CO2 sequestration
    Yao, Yuanxin
    Yin, Zhenyuan
    Niu, Mengya
    Liu, Xuejian
    Zhang, Jibao
    Chen, Daoyi
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [45] Behavior of gas hydrate formation in marine sediments for CO2 sequestration
    Inui, M
    Komai, T
    Sakamoto, Y
    Kawamura, T
    Ando, A
    Kagemoto, H
    PROCEEDINGS OF THE FIFTEENTH (2005) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 2005, : 355 - 359
  • [46] Experimental correlation for the formation rate of CO2 hydrate with THF (tetrahydrofuran) for cooling application
    Sun, Qibei
    Kang, Yong Tae
    ENERGY, 2015, 91 : 712 - 719
  • [47] Amino Acids as Natural Inhibitors for Hydrate Formation in CO2 Sequestration
    Sa, Jeong-Hoon
    Lee, Bo Ram
    Park, Da-Hye
    Han, Kunwoo
    Chun, Hee Dong
    Lee, Kun-Hong
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (13) : 5885 - 5891
  • [48] Numerical simulation of CH4 recovery from gas hydrate using gaseous CO2 injected into porous media
    Wang, Yingfei
    Dong, Bo
    Zhang, Lunxiang
    Li, Weizhong
    Song, Yongchen
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 95
  • [49] Evaluation of CO2 removal from a CO2 + CH4 gas mixture using gas hydrate formation in liquid water and THF solutions
    Zhong, Dong-Liang
    Li, Zheng
    Lu, Yi-Yu
    Wang, Jia-Le
    Yan, Jin
    APPLIED ENERGY, 2015, 158 : 133 - 141
  • [50] Thermodynamic Conditions of Formation of CO2 Hydrate in Carbon Dioxide Injection into a Methane Hydrate Reservoir
    G. G. Tsypkin
    Fluid Dynamics, 2018, 53 : 680 - 689