Numerical analysis of CO2 hydrate growth in a depleted natural gas hydrate formation with free water

被引:8
|
作者
Ahmad, Sheraz [1 ]
Li, Yiming [1 ]
Li, Xiangfang [1 ]
Xia, Wei [1 ]
Chen, Zeen [1 ]
Ullah, Naeem [2 ]
机构
[1] China Univ Petr, Coll Petr Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China
[2] China Univ Petr, Coll Safety & Ocean Engn, Beijing 102249, Peoples R China
来源
关键词
CO2; hydrates; sequestration; numerical simulation; CO2 phase transformation; CARBON-DIOXIDE; MATHEMATICAL-MODEL; POROUS-MEDIUM; INJECTION; METHANE; STORAGE; KINETICS; LEAKAGE; DECOMPOSITION; DISSOCIATION;
D O I
10.1002/ghg.1924
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A dynamically coupled mass, momentum, and heat transfer model was developed, which demonstrated the unstable behavior of CO2 movement inside porous sediment during high pressure injection and its transformation into solid hydrates. The presented mathematical model was solved using the implicit finite difference method, and through ordering the set of model equations, a complex integrated methodology could be established to analyze the CO2 hydrate nucleation procedure within P-T equilibrium conditions. The results showed that the intrinsic permeability factor of the porous sediment had great influence on the pressure distribution. At 10(-13) m(2) intrinsic permeability, the formation pressure distribution became stable at an early stage of the hydrate growth process and remained stable afterwards. The overall hydrate covered length was 320 m due to the massive hydrate growth rate. When intrinsic permeability was reduced to 10(-14) m(2), it showed delay in pressure distribution and the overall hydrate covered length shifts to up to 310 m due to the delay in pressure distribution. Whereas at a 10(-15) m(2) intrinsic permeability factor, there was significant delay in pressure distribution so the injection pressure was not fully distributed even after 30 days of the induction process, which squeezed the hydrate covered length to 130 m. This pressure distribution had direct correlation with other parameter variations during the hydrate growth process, such as temperature distribution, hydrate growth rate, CO2 velocity, CO2 density, CO2 and H2O saturation, CO2 permeability, and interface boundary movement speed. Hence, the pressure distribution inside hydrate-bearing sediment is the most dominant factor to enhance CO2 storage capacity but it does not give satisfactory results in extended formations. (c) 2019 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons, Ltd.
引用
收藏
页码:1181 / 1201
页数:21
相关论文
共 50 条
  • [31] Amino Acids as Natural Inhibitors for Hydrate Formation in CO2 Sequestration
    Sa, Jeong-Hoon
    Lee, Bo Ram
    Park, Da-Hye
    Han, Kunwoo
    Chun, Hee Dong
    Lee, Kun-Hong
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (13) : 5885 - 5891
  • [32] Behavior of gas hydrate formation in marine sediments for CO2 sequestration
    Inui, M
    Komai, T
    Sakamoto, Y
    Kawamura, T
    Ando, A
    Kagemoto, H
    PROCEEDINGS OF THE FIFTEENTH (2005) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 2005, : 355 - 359
  • [33] In situ monitoring of additives during CO2 gas hydrate formation
    Schwenk, M.
    Katzir, A.
    Mizaikoff, B.
    ANALYTICAL METHODS, 2016, 8 (30) : 5897 - 5905
  • [34] Formation Characteristics of CO2 Gas Hydrate in Heterogeneous Porous Media
    Li, Shaohua
    Wang, Sijia
    Xu, Huazheng
    Song, Yongchen
    Jiang, Lanlan
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2022, 43 (10): : 2599 - 2602
  • [35] CO2 sequestration in depleted methane hydrate sandy reservoirs
    Liu, Yu
    Wang, Pengfei
    Yang, Mingjun
    Zhao, Yuechao
    Zhao, Jiafei
    Song, Yongchen
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2018, 49 : 428 - 434
  • [36] Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions
    Sun, Duo
    Englezos, Peter
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2014, 25 : 1 - 8
  • [37] Formation and growth of CO2 clathrate hydrate shells around gas bubbles or liquid drops
    Holder, GD
    Warzinski, RP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 134 - FUEL
  • [38] Hydrate formation during CO2 transport: Predicting water content in the fluid phase in equilibrium with the CO2-hydrate
    Li, Hailong
    Jakobsen, Jana P.
    Stang, Jacob
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (03) : 549 - 554
  • [39] CO2/CH4 hydrate formation from CO2/CH4 liquid mixtures: A key to CO2 sequestration in marine depleted hydrate and shallow gas reservoirs via liquid CO2 injection
    Yao, Yuanxin
    Niu, Mengya
    Zi, Mucong
    Ye, Hongyu
    Duan, Jun
    Chen, Daoyi
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [40] Numerical simulation of enhanced gas recovery from methane hydrate using the heat of CO2 hydrate formation under specific geological conditions
    Ito, Kosuke
    Sawano, Yosuke
    Tada, Kazuhiro
    Sato, Toru
    GAS SCIENCE AND ENGINEERING, 2024, 126