State-of-charge and state-of-health estimation for lithium-ion battery using the direct wave signals of guided wave

被引:44
|
作者
Zhao, Guoqi [1 ,2 ]
Liu, Yu [1 ,2 ]
Liu, Gang [3 ]
Jiang, Shiping [1 ,2 ]
Hao, Wenfeng [1 ,2 ]
机构
[1] Jiangsu Univ, Fac Civil Engn & Mech, Inst Struct Hlth Management, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Natl Ctr Int Res Struct Hlth Management Crit Comp, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Guangzhou Tianma Grp Tianma Motorcycle Co Ltd, Guangzhou 510925, Guangdong, Peoples R China
来源
JOURNAL OF ENERGY STORAGE | 2021年 / 39卷
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Ultrasonic guided waves; Non-contact detection; The direct wave signals; State of charge; State of health; VOLTAGE;
D O I
10.1016/j.est.2021.102657
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the development of new energy technology, lithium-ion battery, as a common energy storage and driving structure, has been widely used in many fields. It is significant to accurately monitor and evaluate the state of charge (SOC) and state of health (SOH) of lithium-ion battery. This paper presents the estimation method of SOC and SOH of lithium-ion battery based on ultrasonic guided wave technology. In the experiment, the guided wave signals are activated by a single fixed piezoelectric transducer and the propagating guided waves are rapidly captured using a scanning laser Doppler vibrometer system. The multi-parameter analysis of the direct wave signals including time-domain, frequency-domain and time-frequency distribution are performed, and thus three guided-wave parameters, namely signal amplitude, time of flight and power spectral density connected with the charge discharge cycle and aging of battery, are successively set to comprehensively evaluate SOC/SOH of lithium-ion battery. The results show that the guided wave parameters in time-domain, frequency-domain and time-frequency distribution have well consistent correspondence with SOC/SOH, and the differential curve analysis of signal amplitude can effectively reflect the phase transitions in the charge-discharge cycle and the aging process. In addition, the sensitivity of ultrasonic guided wave technology to estimation of SOC/SOH gradually decreases with the battery aging.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [2] State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Moo, Chin-Sien
    ENERGIES, 2017, 10 (07):
  • [3] Estimation of State-of-Charge and State-of-Health for Lithium-Ion Degraded Battery Considering Side Reactions
    Gao, Yizhao
    Zhang, Xi
    Yang, Jun
    Guo, Bangjun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (16) : A4018 - A4026
  • [4] A comprehensive review of state-of-charge and state-of-health estimation for lithium-ion battery energy storage systems
    Tao, Junjie
    Wang, Shunli
    Cao, Wen
    Takyi-Aninakwa, Paul
    Fernandez, Carlos
    Guerrero, Josep M.
    IONICS, 2024, 30 (10) : 5903 - 5927
  • [5] Estimation of state-of-charge and state-of-health for lithium-ion battery based on improved firefly optimized particle filter
    Ouyang, Tiancheng
    Ye, Jinlu
    Xu, Peihang
    Wang, Chengchao
    Xu, Enyong
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [6] A novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health
    ShangYu Zhao
    Kai Ou
    XingXing Gu
    ZhiMin Dan
    JiuJun Zhang
    YaXiong Wang
    Rare Metals, 2024, 43 (11) : 5637 - 5651
  • [7] A novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health
    Zhao, Shang-Yu
    Ou, Kai
    Gu, Xing-Xing
    Dan, Zhi-Min
    Zhang, Jiu-Jun
    Wang, Ya-Xiong
    RARE METALS, 2024, 43 (11) : 5637 - 5651
  • [8] State-of-Charge and State-of-Health Estimating Method for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Wang, Jhih-Kai
    Moo, Chin-Sien
    Kawamura, Atsuo
    2016 IEEE 17TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), 2016,
  • [9] Electrochemical Impedance Spectroscopy Based State-of-Health Estimation for Lithium-Ion Battery Considering Temperature and State-of-Charge Effect
    Zhang, Qunming
    Huang, Cheng-Geng
    Li, He
    Feng, Guodong
    Peng, Weiwen
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (04) : 4633 - 4645
  • [10] Co-estimation of lithium-ion battery state-of-charge and state-of-health based on fractional-order model
    Ye, Lihua
    Peng, Dinghan
    Xue, Dingbang
    Chen, Sijian
    Shi, Aiping
    JOURNAL OF ENERGY STORAGE, 2023, 65