A LOCAL SUBSPACE BASED NONLINEAR TARGET DETECTOR

被引:0
|
作者
Wang, Ting [1 ]
Du, Bo [2 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Comp, Wuhan 430072, Peoples R China
来源
2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS) | 2012年
关键词
target detection; orthogonal subspace projection; kernel mapping; localized; HYPERSPECTRAL IMAGERY; ANOMALY DETECTION; CLASSIFICATION; ALGORITHMS; PROJECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional Orthogonal Subspace Projection (OSP) target detection method can not solve the problem of nonlinear mixing of endmember spectra. Meanwhile, Kernelized Orthogonal Subspace Projection (KOSP) method maps the inseparable data into high dimension space where the target endmembers and background endmembers can be separated. However, the background subspace remains the same for different pixels in KOSP, which would lead to false alarms due to the spectral variation. In order to optimize the background subspace and better suppress the false alarms, this paper proposes a local subspace based nonlinear OSP method (LKOSP) for target detection. Kernelization and neighbor spatial information are used to construct variable optimum background projective subspace. In both simulated data and real image experiments, LKOSP showed superior detection performance over other conventional algorithms.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Tensor Matched Subspace Detector for Hyperspectral Target Detection
    Liu, Yongjian
    Gao, Guoming
    Gu, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (04): : 1967 - 1974
  • [2] A Randomized Subspace Learning Based Anomaly Detector for Hyperspectral Imagery
    Sun, Weiwei
    Tian, Long
    Xu, Yan
    Du, Bo
    Du, Qian
    REMOTE SENSING, 2018, 10 (03):
  • [3] Target detection based on a dynamic subspace
    Du, Bo
    Zhang, Liangpei
    PATTERN RECOGNITION, 2014, 47 (01) : 344 - 358
  • [4] LOCAL APPROACH TO ORTHOGONAL SUBSPACE-BASED TARGET DETECTION IN HYPERSPECTRAL IMAGES
    Matteoli, Stefania
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 388 - +
  • [5] Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and Statistics-Based Detector for Hyperspectral Images
    Du, Bo
    Zhang, Yuxiang
    Zhang, Liangpei
    Tao, Dacheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5345 - 5357
  • [6] A New Target Detector Based on Subspace Projections Using Polarimetric SAR Data
    Bordbari, Reza
    Maghsoudi, Yasser
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (05): : 3025 - 3039
  • [7] MATCHED SUBSPACE DETECTOR BASED ON SPARSE REPRESENTATION FOR TARGET DETECTION IN HYPERSPECTRAL IMAGERY
    Gu, Yanfeng
    Zheng, He
    Gao, Guoming
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [8] Orthogonal Subspace Projection Target Detector for Hyperspectral Anomaly Detection
    Chang, Chein-, I
    Cao, Hongju
    Song, Meiping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4915 - 4932
  • [9] Parallel discriminative subspace for city target detection from high dimension images
    Zhang, Yipeng
    Zhang, Yiming
    Du, Bo
    Zhang, Chao
    Guo, Xiaoyang
    Tu, Weiping
    GEOINFORMATICA, 2022, 26 (02) : 299 - 322
  • [10] A Nonlinear Sparse Representation-Based Binary Hypothesis Model for Hyperspectral Target Detection
    Zhang, Yuxiang
    Zhang, Liangpei
    Du, Bo
    Wang, Shugen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2513 - 2522