Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides

被引:81
作者
Chen, Xi [1 ]
Girard, Steven N. [2 ]
Meng, Fei [2 ]
Lara-Curzio, Edgar [3 ]
Jin, Song [2 ]
Goodenough, John B. [1 ]
Zhou, Jianshi [1 ]
Shi, Li [1 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
HIGH-THERMOELECTRIC PERFORMANCE; TRANSPORT-PROPERTIES; CRYSTAL-STRUCTURE; EFFICIENCY; PHASE; MNSI; GE; CR;
D O I
10.1002/aenm.201400452
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Higher manganese silicides (HMS) made of earth-abundant and non-toxic elements are regarded as promising p-type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1-xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50-200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x <= 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1-xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 +/- 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1-xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Substitutional Atom Influence on the Electronic and Transport Properties of Mn4Si7 [J].
Allam, Ali ;
Boulet, Pascal ;
Record, Marie-Christine .
JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (03) :761-773
[2]   Effects of ge doping on micromorphology of MnSi in MnSi∼1.7 and on their thermoelectric transport properties [J].
Aoyama, I ;
Fedorov, MI ;
Zaitsev, VK ;
Solomkin, FY ;
Eremin, IS ;
Samunin, AY ;
Mukoujima, M ;
Sano, S ;
Tsuji, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (12) :8562-8570
[3]   Doping effects on thermoelectric properties of higher manganese silicides (HMSs, MnSi1.74) and characterization of thermoelectric generating module using p-type (Al, Ge and Mo)-doped HMSs and n-type Mg2Si0.4Sn0.6 legs [J].
Aoyama, I ;
Kaibe, H ;
Rauscher, L ;
Kanda, T ;
Mukoujima, M ;
Sano, S ;
Tsuji, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (6A) :4275-4281
[4]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[5]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[6]   SPECIFIC-HEAT IN SOME GADOLINIUM COMPOUNDS .1. EXPERIMENTAL [J].
BOUVIER, M ;
LETHUILLIER, P ;
SCHMITT, D .
PHYSICAL REVIEW B, 1991, 43 (16) :13137-13144
[7]   Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9 [J].
Bux, Sabah K. ;
Zevalkink, Alexandra ;
Janka, Oliver ;
Uhl, David ;
Kauzlarich, Susan ;
Snyder, Jeffrey G. ;
Fleurial, Jean-Pierre .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (01) :215-220
[8]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[9]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[10]  
Chen X., 2013, J APPL PHYS, P114