Neuroprotective properties of mildronate, a mitochondria-targeted small molecule

被引:24
作者
Pupure, Jolanta [1 ]
Isajevs, Sergejs [2 ]
Skapare, Elina [3 ]
Rumaks, Juris [1 ]
Svirskis, Simons [1 ]
Svirina, Darja [2 ]
Kalvinsh, Ivars [3 ]
Klusa, Vija [1 ]
机构
[1] Latvian State Univ, Fac Med, Dept Pharmacol, LV-1001 Riga, Latvia
[2] Latvian State Univ, Fac Med, Dept Pathol, LV-1001 Riga, Latvia
[3] Latvian Inst Organ Synth, LV-1006 Riga, Latvia
关键词
Mildronate; Neuroinflammation; Neurodegeneration; Azidothymidine neurotoxicity; Neuroprotection; BUTYROBETAINE HYDROXYLASE INHIBITOR; OXIDATIVE STRESS; NEURODEGENERATION; INFLAMMATION; TRANSPORTER; EXPRESSION; PROTECTION; MOUSE; CELLS; HEART;
D O I
10.1016/j.neulet.2009.12.055
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mildronate, a representative of the aza-butyrobetaine class of drugs with proven cardioprotective efficacy, was recently found to prevent dysfunction of complex I in rat liver mitochondria. The present study demonstrates that mildronate also acts as a neuroprotective agent. In a mouse model of azidothymidine (anti-HIV drug) neurotoxicity, mildronate reduced the azidothymidine-induced alterations in mouse brain tissue: it normalized the increase in caspase-3, cellular apoptosis susceptibility protein (CAS) and iNOS expression assessed by quantitative and semi-quantitative analysis. Mildronate also normalized the changes in cytochrome c oxidase (COX) expression, reduced the expression of glial fibrillary acidic protein (GFAP) and cellular infiltration. The present results show that the neuroprotective action of mildronate results at least partially from anti-neurodegenerative (anti-apoptotic) and anti-inflammatory mechanisms. It might be suggested that the molecular conformation of mildronate can facilitate its easy binding to mitochondria, and regulate the expression of different signal molecules, hence maintaining cellular signaling and survival. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:100 / 105
页数:6
相关论文
共 50 条
  • [1] Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type
    Isaev, Nickolay K.
    Stelmashook, Elena V.
    Genrikhs, Elisaveta E.
    Korshunova, Galina A.
    Sumbatyan, Natalya V.
    Kapkaeva, Marina R.
    Skulachev, Vladimir P.
    REVIEWS IN THE NEUROSCIENCES, 2016, 27 (08) : 849 - 855
  • [2] Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson's Disease
    Klusa, Vija Z.
    Isajevs, Sergejs
    Svirina, Darja
    Pupure, Jolanta
    Beitnere, Ulrika
    Rumaks, Juris
    Svirskis, Simons
    Jansone, Baiba
    Dzirkale, Zane
    Muceniece, Ruta
    Kalvinsh, Ivars
    Vinters, Harry V.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2010, 11 (11): : 4465 - 4487
  • [3] Neuroprotective Effects of Mitochondria-Targeted Plastoquinone and Thymoquinone in a Rat Model of Brain Ischemia/Reperfusion Injury
    Silachev, Denis N.
    Plotnikov, Egor Y.
    Zorova, Ljubava D.
    Pevzner, Irina B.
    Sumbatyan, Natalia V.
    Korshunova, Galina A.
    Gulyaev, Mikhail V.
    Pirogov, Yury A.
    Skulachev, Vladimir P.
    Zorov, Dmitry B.
    MOLECULES, 2015, 20 (08) : 14487 - 14503
  • [4] Mitochondria-targeted antioxidants
    Oyewole, Anne O.
    Birch-Machin, Mark A.
    FASEB JOURNAL, 2015, 29 (12) : 4766 - 4771
  • [5] Advances in Mitochondria-Targeted Drug Delivery
    Bottani, Emanuela
    Brunetti, Dario
    PHARMACEUTICS, 2023, 15 (08)
  • [6] Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants
    Jameson, Victoria J. A.
    Cocheme, Helena M.
    Logan, Angela
    Hanton, Lyall R.
    Smith, Robin A. J.
    Murphy, Michael P.
    TETRAHEDRON, 2015, 71 (44) : 8444 - 8453
  • [7] Mitochondria-targeted nanoparticles in treatment of neurodegenerative diseases
    Zhang, Yue
    Yang, Han
    Wei, Daohe
    Zhang, Xinhui
    Wang, Jian
    Wu, Xiaoli
    Chang, Jin
    EXPLORATION, 2021, 1 (03):
  • [8] Antimutagenic activity of mitochondria-targeted plastoquinone derivative
    Chistyakov, V. A.
    Sazykina, M. A.
    Alexandrova, A. A.
    Belichenko, N. I.
    Mashkina, E. V.
    Gutnikova, L. V.
    Zolotukhin, P. V.
    Shkurat, T. P.
    BIOCHEMISTRY-MOSCOW, 2010, 75 (03) : 269 - 273
  • [9] Pros and Cons of Use of Mitochondria-Targeted Antioxidants
    Plotnikov, Egor Y.
    Zorov, Dmitry B.
    ANTIOXIDANTS, 2019, 8 (08)
  • [10] Mitochondria-targeted senotherapeutic interventions
    Atayik, Mehmet Can
    Cakatay, Ufuk
    BIOGERONTOLOGY, 2022, 23 (04) : 401 - 423