A New Deep Learning Model for Face Recognition and Registration in Distance Learning

被引:5
|
作者
Salamh, Ahmed B. Salem [1 ]
Akyuz, Halil [1 ]
机构
[1] Kastamonu Univ, Kastamonu, Turkey
关键词
face recognition; deep learning; face identification; distance learning; feature extraction; FEATURE-EXTRACTION;
D O I
10.3991/ijet.v17i12.30377
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The demand for secure, accurate and reliable identification of individuals using facial recognition has attracted considerable interest in education, security and many other sectors, not limited because it is robust, secure and authentic. Recently, the demand for distance learning has increased dramatically. This increase is due to various barriers to learning that arise from enforced conditions such as seclusion and social distancing. Facial feature extraction in distance education is valuable in supporting face authenticity as it prevents the position of participants from changing, especially during the examination phase. In the field of face recognition, there is a mismatch between research and practical application. In this paper, we present a novel but highly efficient Deep Learning model for improving face recognition and registration in distance education. The technique is based on a combination of sequential and residual identity blocking. This makes it possible to evaluate the effectiveness of using deeper blocks than other models. The new model has proven to be able to extract features from faces in a high and accurate manner in compared with other state-of-the-art methods. In registration processing, there are several challenges related to training data limitation, face recognition and verification. We present a new architecture for face recognition and registration. Experiments have shown that our registration model is capable of recognizing almost all faces and registering the corresponding labels.
引用
收藏
页码:29 / 41
页数:13
相关论文
共 50 条
  • [31] Age Invariant Face Recognition Based on Deep Learning
    He X.-C.
    Guo Y.
    Li Q.-L.
    Gao C.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 877 - 886
  • [32] Face recognition using deep learning on Raspberry Pi
    Aboluhom, Abdulatif Ahmed Ali
    Kandilli, Ismet
    COMPUTER JOURNAL, 2024, 67 (10): : 3020 - 3030
  • [33] Deep Learning based Face Recognition for Security Robot
    Lee, Min-Fan Ricky
    Huang, Yun-Min
    Sun, Jia-Yang
    Chen, Xue-Qin
    Huang, Ting-Fu
    2022 18TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2022), 2022,
  • [34] Face Recognition Based on Deep Learning and Data Augmentation
    Nguyen, Lam Duc Vu
    Chau, Van Van
    Nguyen, Sinh Van
    FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 560 - 573
  • [35] A Novel Deep Learning Model for Palmprint/Palmvein Recognition
    Guo, Xiumei
    Zhang, Ping
    Wang, Chengyi
    Sun, Bo
    Sun, Saisai
    IEEE ACCESS, 2021, 9 : 122847 - 122854
  • [36] Custom Deep Learning Face Recognition based on Tensorflow Model for Attendance Management System
    Soetrisno, Yosua Alvin Adi
    Sofwan, Aghus
    Arfan, M.
    Sumardi
    2021 5TH INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2021), 2021,
  • [37] Remote Sensing Image Registration Based on Deep Learning Regression Model
    Li, Liangzhi
    Han, Ling
    Ding, Mingtao
    Liu, Zhiheng
    Cao, Hongye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [38] The model of fast face recognition against age interference in deep learning
    Zhang, Yuzhe
    Wu, Peilin
    Zhao, Jinhui
    Feng, Hao
    Liao, Rongtao
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2022, 14 (3-4) : 223 - 238
  • [39] A lightweight deep learning model for real-time face recognition
    Deng, Zong-Yue
    Chiang, Hsin-Han
    Kang, Li-Wei
    Li, Hsiao-Chi
    IET IMAGE PROCESSING, 2023, 17 (13) : 3869 - 3883
  • [40] Improved softmax loss for deep learning-based face and expression recognition
    Zhou, Jiancan
    Jia, Xi
    Shen, Linlin
    Wen, Zhenkun
    Ming, Zhong
    COGNITIVE COMPUTATION AND SYSTEMS, 2019, 1 (04) : 97 - 102