Determinant for the cyclic heptadiagonal matrices with Toeplitz structure

被引:1
|
作者
Solary, Maryam Shams [1 ]
Sadeghy, Ensieh [1 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Cyclic heptadiagonal matrices; Toeplitz matrices; Determinant;
D O I
10.1007/s13370-019-00730-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend two efficient computational algorithms for the determinant evaluation of general cyclic heptadiagonal matrices with Toeplitz structure. We try to design two numerical algorithms by a certain type of matrix reordering in matrix partition and another algorithm by using the transformation of a block upper triangular transformation for the cyclic heptadiagonal Toeplitz matrices. The cost of these algorithms is about 11n+O(logn) for computing nth order cyclic heptadiagonal Toeplitz determinants. Some numerical experiments are presented to demonstrate the performance and effectiveness of the proposed algorithms with other published algorithms.
引用
收藏
页码:407 / 422
页数:16
相关论文
共 50 条
  • [21] Spectral properties for a type of heptadiagonal symmetric matrices
    da Silva, Joao Lita
    AIMS MATHEMATICS, 2023, 8 (12): : 29995 - 30022
  • [22] On the determinant evaluation of quasi penta-diagonal matrices and quasi penta-diagonal Toeplitz matrices
    Yao-Lin Jiang
    Ji-Teng Jia
    Journal of Mathematical Chemistry, 2013, 51 : 2503 - 2513
  • [23] On the determinant evaluation of quasi penta-diagonal matrices and quasi penta-diagonal Toeplitz matrices
    Jiang, Yao-Lin
    Jia, Ji-Teng
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (09) : 2503 - 2513
  • [24] TOEPLITZ MATRICES AND COMMUTING TRIDIAGONAL MATRICES
    PERLINE, R
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1991, 12 (02) : 321 - 326
  • [25] On inversion of Toeplitz matrices
    Ng, MK
    Rost, K
    Wen, YW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 348 : 145 - 151
  • [26] Perturbations on the subdiagonals of Toeplitz matrices
    Castillo, K.
    Garza, L.
    Marcellan, F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (06) : 1563 - 1579
  • [27] Optimal measures for Toeplitz matrices
    Hladnik, M
    Holbrook, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 402 (1-3) : 319 - 334
  • [28] A New Preconditioner for Toeplitz Matrices
    Dominguez-Jimenez, Maria Elena
    Ferreira, Paulo J. S. G.
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (09) : 758 - 761
  • [29] On some properties of Toeplitz matrices
    Kucerovsky, Dan
    Mousavand, Kaveh
    Sarraf, Aydin
    COGENT MATHEMATICS, 2016, 3
  • [30] Multigrid preconditioning and Toeplitz matrices
    Huckle, T
    Staudacher, J
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2002, 13 : 81 - 105