Reinforcing efficiency of nanocellulose in polymers

被引:58
作者
Aitomaki, Yvonne [1 ]
Oksman, Kristiina [1 ]
机构
[1] Lulea Univ Technol, Composite Ctr Sweden, Div Mat Sci, S-97187 Lulea, Sweden
关键词
Cellulose nanofibres; Model strength; Modulus; Network; BACTERIAL CELLULOSE; TENSILE-STRENGTH; HIGH TOUGHNESS; NANOCOMPOSITES; COMPOSITES; BIOCOMPOSITES; DISTRIBUTIONS; NANOFIBERS; MORPHOLOGY; NETWORK;
D O I
10.1016/j.reactfunctpolym.2014.08.010
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nanocellulose extracted from renewable sources, is a promising reinforcement for many polymers and is a material where strong interfibre hydrogen bonds add effects not seen in microfiber composites. Presented is a tool for comparing different nanocellulose composites based on estimating the efficiency of nanocellulose reinforcement. A reinforcing efficiency factor is calculated from reported values of elastic modulus and strength from various nanocellulose composites using established micromechanical models. In addition, for the strength, a network model is derived based on fibre-fibre bond strength within nanocellulose networks. The strength results highlight the importance of the plastic deformation in the nanocellulose composites. Both modulus and strength efficiency show that the network strength and modulus has a greater effect than that of the individual constituents. In the best cases, nanocellulose reinforcement exceeds all model predictions. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 37 条
  • [1] Aitornaki Y., 2014, BIOBASED COMPOSITE M, V4
  • [2] Stiffness and strength of flax fiber/polymer matrix composites
    Andersons, J
    Sparnins, E
    Joffe, R
    [J]. POLYMER COMPOSITES, 2006, 27 (02) : 221 - 229
  • [3] Strength distribution of elementary flax fibres
    Andersons, J
    Sparnins, E
    Joffe, R
    Wallström, L
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (3-4) : 693 - 702
  • [4] Investigation of polybutylene succinate-co-adipate (PBSA)/montmorillonite layered silicate (MLS) melt-processed nanocomposites
    Steeves, Diane M.
    Farrell, Richard
    Ratto, Jo Ann
    [J]. JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2007, 1 (01) : 94 - 108
  • [5] Boresi A.P., 2003, ADV MECH MAT, V5
  • [6] Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis
    Capadona, Jeffrey R.
    Shanmuganathan, Kadhiravan
    Tyler, Dustin J.
    Rowan, Stuart J.
    Weder, Christoph
    [J]. SCIENCE, 2008, 319 (5868) : 1370 - 1374
  • [7] Forsythe G.E., 1976, COMPUTER METHODS MAT
  • [8] Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers
    Fu, SY
    Lauke, B
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 1996, 56 (10) : 1179 - 1190
  • [9] Strong aqueous gels of cellulose nanofibers and nanowhiskers isolated from softwood flour
    Gong, Guan
    Mathew, Aji P.
    Oksman, Kristiina
    [J]. TAPPI JOURNAL, 2011, 10 (02): : 7 - 14
  • [10] HALPIN-TSAI EQUATIONS - REVIEW
    HALPIN, JC
    KARDOS, JL
    [J]. POLYMER ENGINEERING AND SCIENCE, 1976, 16 (05) : 344 - 352