Estimation of stellar atmospheric parameters from SDSS/SEGUE spectra

被引:87
|
作者
Fiorentin, P. Re
Bailer-Jones, C. A. L.
Lee, Y. S.
Beers, T. C.
Sivarani, T.
Wilhelm, R.
Prieto, C. Allende
Norris, J. E.
机构
[1] Max Planck Inst Astron, D-69117 Heidelberg, Germany
[2] Michigan State Univ, Dept Phys & Astron, CSCE, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Phys & Astron, JINA, E Lansing, MI 48824 USA
[4] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA
[5] Univ Texas, Dept Astron, Austin, TX 78712 USA
[6] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia
关键词
surveys; methods : data analysis; methods : statistical; stars : fundamental parameters;
D O I
10.1051/0004-6361:20077334
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present techniques for the estimation of stellar atmospheric parameters ( T-eff, log g, [ Fe/H]) for stars from the SDSS/SEGUE survey. The atmospheric parameters are derived from the observed medium- resolution ( R = 2000) stellar spectra using non-linear regression models trained either on ( 1) pre-classified observed data or ( 2) synthetic stellar spectra. In the first case we use our models to automate and generalize parametrization produced by a preliminary version of the SDSS/SEGUE Spectroscopic Parameter Pipeline ( SSPP). In the second case we directly model the mapping between synthetic spectra ( derived from Kurucz model atmospheres) and the atmospheric parameters, independently of any intermediate estimates. After training, we apply our models to various samples of SDSS spectra to derive atmospheric parameters, and compare our results with those obtained previously by the SSPP for the same samples. We obtain consistency between the two approaches, with RMS deviations on the order of 150 K in T-eff, 0.35 dex in log g, and 0.22 dex in [ Fe/H]. The models are applied to pre-processed spectra, either via Principal Component Analysis ( PCA) or a Wavelength Range Selection ( WRS) method, which employs a subset of the full 3850 - 9000 angstrom spectral range. This is both for computational reasons ( robustness and speed), and because it delivers higher accuracy ( better generalization of what the models have learned). Broadly speaking, the PCA is demonstrated to deliver more accurate atmospheric parameters when the training data are the actual SDSS spectra with previously estimated parameters, whereas WRS appears superior for the estimation of log g via synthetic templates, especially for lower signal-to-noise spectra. From a subsample of some 19 000 stars with previous determinations of the atmospheric parameters, the accuracies of our predictions ( mean absolute errors) for each parameter are T-eff to 170/170 K, log g to 0.36/0.45 dex, and [ Fe/H] to 0.19/0.26 dex, for methods ( 1) and ( 2), respectively. We measure the intrinsic errors of our models by training on synthetic spectra and evaluating their performance on an independent set of synthetic spectra. This yields RMS accuracies of 50 K, 0.02 dex, and 0.03 dex on T-eff, log g, and [ Fe/H], respectively. Our approach can be readily deployed in an automated analysis pipeline, and can easily be retrained as improved stellar models and synthetic spectra become available. We nonetheless emphasise that this approach relies on an accurate calibration and pre- processing of the data ( to minimize mismatch between the real and synthetic data), as well as sensible choices concerning feature selection. From an analysis of cluster candidates with available SDSS spectroscopy ( M 15, M 13, M 2, and NGC 2420), and assuming the age, metallicity, and distances given in the literature are correct, we find evidence for small systematic offsets in T-eff and/ or log g for the parameter estimates from the model trained on real data with the SSPP. Thus, this model turns out to derive more precise, but less accurate, atmospheric parameters than the model trained on synthetic data.
引用
收藏
页码:1373 / 1387
页数:15
相关论文
共 50 条
  • [1] SDSS/SEGUE SPECTRAL FEATURE ANALYSIS FOR STELLAR ATMOSPHERIC PARAMETER ESTIMATION
    Li, Xiangru
    Wu, Q. M. Jonathan
    Luo, Ali
    Zhao, Yongheng
    Lu, Yu
    Zuo, Fang
    Yang, Tan
    Wang, Yongjun
    ASTROPHYSICAL JOURNAL, 2014, 790 (02)
  • [2] THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA
    Lee, Young Sun
    Beers, Timothy C.
    Prieto, Carlos Allende
    Lai, David K.
    Rockosi, Constance M.
    Morrison, Heather L.
    Johnson, Jennifer A.
    An, Deokkeun
    Sivarani, Thirupathi
    Yanny, Brian
    ASTRONOMICAL JOURNAL, 2011, 141 (03)
  • [3] Comparison of Determined Stellar Parameters between LAMOST and SEGUE Spectra
    Wu, Yue
    Luo, Ali
    Du, Bing
    Guo, Yanxin
    SETTING THE SCENE FOR GAIA AND LAMOST, 2014, 9 (298): : 445 - 445
  • [4] THE SEGUE STELLAR PARAMETER PIPELINE. III. COMPARISON WITH HIGH-RESOLUTION SPECTROSCOPY OF SDSS/SEGUE FIELD STARS
    Prieto, Carlos Allende
    Sivarani, Thirupathi
    Beers, Timothy C.
    Lee, Young Sun
    Koesterke, Lars
    Shetrone, Matthew
    Sneden, Christopher
    Lambert, David L.
    Wilhelm, Ronald
    Rockosi, Constance M.
    Lai, David K.
    Yanny, Brian
    Ivans, Inese I.
    Johnson, Jennifer A.
    Aoki, Wako
    Bailer-Jones, Coryn A. L.
    Fiorentin, Paola Re
    ASTRONOMICAL JOURNAL, 2008, 136 (05) : 2070 - 2082
  • [5] BINARY CONTAMINATION IN THE SEGUE SAMPLE: EFFECTS ON SSPP DETERMINATIONS OF STELLAR ATMOSPHERIC PARAMETERS
    Schlesinger, Katharine J.
    Johnson, Jennifer A.
    Lee, Young Sun
    Masseron, Thomas
    Yanny, Brian
    Rockosi, Constance M.
    Gaudi, B. Scott
    Beers, Timothy C.
    ASTROPHYSICAL JOURNAL, 2010, 719 (02) : 996 - 1020
  • [6] ZASPE: a code to measure stellar atmospheric parameters and their covariance from spectra
    Brahm, Rafael
    Jordan, Andres
    Hartman, Joel
    Bakos, Gaspar
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 467 (01) : 971 - 984
  • [7] ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY
    Holtzman, Jon A.
    Shetrone, Matthew
    Johnson, Jennifer A.
    Allende Prieto, Carlos
    Anders, Friedrich
    Andrews, Brett
    Beers, Timothy C.
    Bizyaev, Dmitry
    Blanton, Michael R.
    Bovy, Jo
    Carrera, Ricardo
    Chojnowski, S. Drew
    Cunha, Katia
    Eisenstein, Daniel J.
    Feuillet, Diane
    Frinchaboy, Peter M.
    Galbraith-Frew, Jessica
    Garcia Perez, Ana E.
    Garcia-Hernandez, D. A.
    Hasselquist, Sten
    Hayden, Michael R.
    Hearty, Fred R.
    Ivans, Inese
    Majewski, Steven R.
    Martell, Sarah
    Meszaros, Szabolcs
    Muna, Demitri
    Nidever, David
    Duy Cuong Nguyen
    O'Connell, Robert W.
    Pan, Kaike
    Pinsonneault, Marc
    Robin, Annie C.
    Schiavon, Ricardo P.
    Shane, Neville
    Sobeck, Jennifer
    Smith, Verne V.
    Troup, Nicholas
    Weinberg, David H.
    Wilson, John C.
    Wood-Vasey, W. M.
    Zamora, Olga
    Zasowski, Gail
    ASTRONOMICAL JOURNAL, 2015, 150 (05)
  • [8] Automated estimation of stellar fundamental parameters from low resolution spectra: the PLS method
    Zhang, Jian-Nan
    Luo, A-Li
    Zhao, Yong-Heng
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2009, 9 (06) : 712 - 724
  • [9] LINEARLY SUPPORTING FEATURE EXTRACTION FOR AUTOMATED ESTIMATION OF STELLAR ATMOSPHERIC PARAMETERS
    Li, Xiangru
    Lu, Yu
    Comte, Georges
    Luo, Ali
    Zhao, Yongheng
    Wang, Yongjun
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2015, 218 (01)
  • [10] APPLICATION OF THE SEGUE STELLAR PARAMETER PIPELINE TO LAMOST STELLAR SPECTRA
    Lee, Young Sun
    Beers, Timothy C.
    Carlin, Jeffrey L.
    Newberg, Heidi J.
    Hou, Yonghui
    Li, Guangwei
    Luo, A. -Li
    Wu, Yue
    Yang, Ming
    Zhang, Haotong
    Zhang, Wei
    Zhang, Yong
    ASTRONOMICAL JOURNAL, 2015, 150 (06)