Incremental updating algorithm for core computing in dominance-based rough set model

被引:0
作者
Jia, Xiuyi [1 ]
Shang, Lin [1 ]
Ji, Yangsheng [1 ]
Lie, Weiwei [2 ]
机构
[1] Nanjing Univ, Natl Lab Novel Software Technol, Nanjing 210093, Peoples R China
[2] Chongqing Univ, Coll Automat Engn, Chongqing 400030, Peoples R China
来源
ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, PROCEEDINGS | 2007年 / 4482卷
基金
中国国家自然科学基金;
关键词
rough sets; dominance discernibility matrix; incremental updating; core;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper analyzes incremental updating for core computing in a dominance-based rough set model, which extends previous reduct studies in capability of dynamic updating and dominance relation. Then we redefine the dominance discernibility matrix and present an incremental updating algorithm. In this algorithm, when new samples arrive, the proposed solution only involves a few modifications to relevant rows and columns in the dominance discernibility matrix instead of recalculation. Both of theoretical analysis and experimental results show that the algorithm is effective and efficient in dynamic computation.
引用
收藏
页码:403 / +
页数:2
相关论文
共 12 条
[1]  
Greco S, 2002, LECT NOTES ARTIF INT, V2475, P85
[2]   Rough sets methodology for sorting problems in presence of multiple attributes and criteria [J].
Greco, S ;
Matarazzo, B ;
Slowinski, R .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 138 (02) :247-259
[3]  
Greco S., 2001, lecture notes in artificial intelligence, V2005, P304
[4]  
Greco S., 1999, ADV MULTIPLE CRITERI
[5]   LEARNING IN RELATIONAL DATABASES - A ROUGH SET APPROACH [J].
HU, XH ;
CERCONE, N .
COMPUTATIONAL INTELLIGENCE, 1995, 11 (02) :323-338
[6]   ROUGH SET REDUCTION OF ATTRIBUTES AND THEIR DOMAINS FOR NEURAL NETWORKS [J].
JELONEK, J ;
KRAWIEC, K ;
SLOWINSKI, R .
COMPUTATIONAL INTELLIGENCE, 1995, 11 (02) :339-347
[7]  
LI KW, 2003, P 2003 NAT C ART INT, P1359
[8]   ROUGH SETS [J].
PAWLAK, Z .
INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1982, 11 (05) :341-356
[9]  
Slowinski R, 2000, CONTROL CYBERN, V29, P379
[10]   Reduction algorithms based on discernibility matrix: The ordered attributes method [J].
Wang, J ;
Wang, J .
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2001, 16 (06) :489-504