The Regulation of an Electric Oven and an Inverted Pendulum

被引:31
作者
Balcazar, Ricardo [1 ]
Rubio, Jose de Jesus [1 ]
Orozco, Eduardo [1 ]
Andres Cordova, Daniel [1 ]
Ochoa, Genaro [1 ]
Garcia, Enrique [1 ]
Pacheco, Jaime [1 ]
Juliana Gutierrez, Guadalupe [1 ]
Mujica-Vargas, Dante [2 ]
Aguilar-Ibanez, Carlos [3 ]
机构
[1] Inst Politecn Nacl, Secc Estudios Posgrad & Invest, ESIME Azcapotzalco, Av Granjas 682, Mexico City 02250, DF, Mexico
[2] Tecnol Nacl Mexico, Dept Comp Sci, CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Inst Politecn Nacl, Ctr Invest Comp, Av Juan Dios Batiz S-N, Mexico City 07738, DF, Mexico
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 04期
关键词
linearization; inverted pendulum; electric oven; PID; sliding-mode; SYSTEMS;
D O I
10.3390/sym14040759
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this research, a proportional integral derivative regulator, a first-order sliding-mode regulator, and a second-order sliding-mode regulator are compared, for the regulation of two different types of mathematical model. A first-order sliding-mode regulator is a method where a sign-mapping checks that the error decays to zero after a convergence time; it has the problem of chattering in the output. A second-order sliding-mode regulator is a smooth method to counteract the chattering effect where the integral of the sign-mapping is used. A second-order sliding-mode regulator is presented as a new class of algorithm where the trajectory is asymptotic and stable; it is shown to greatly improve the convergence time in comparison with other regulators considered. Simulation and experimental results are described in which an electric oven is considered as a stable linear mathematical model, and an inverted pendulum is considered as an asymmetrical unstable non-linear mathematical model.
引用
收藏
页数:24
相关论文
共 24 条
[1]   Finite -time reliable stabilization of uncertain semi-Markovian jump systems with input saturation [J].
Aravindh, D. ;
Sakthivel, R. ;
Kong, Fanchao ;
Anthoni, S. Marshal .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 384
[2]   Control Theory Application for Swing Up and Stabilisation of Rotating Inverted Pendulum [J].
Bajrami, Xhevahir ;
Pajaziti, Arbnor ;
Likaj, Rame ;
Shala, Ahmet ;
Berisha, Rinor ;
Bruqi, Mirlind .
SYMMETRY-BASEL, 2021, 13 (08)
[3]   Swarm-Based Design of Proportional Integral and Derivative Controllers Using a Compromise Cost Function: An Arduino Temperature Laboratory Case Study [J].
de Moura Oliveira, P. B. ;
Hedengren, John D. ;
Solteiro Pires, E. J. .
ALGORITHMS, 2020, 13 (12)
[4]   A Hybrid Control Approach for the Swing Free Transportation of a Double Pendulum with a Quadrotor [J].
Estevez, Julian ;
Lopez-Guede, Jose Manuel ;
Garate, Gorka ;
Grana, Manuel .
APPLIED SCIENCES-BASEL, 2021, 11 (12)
[5]   On the Finite-Time Stabilization for a Class of Interconnected Switched Nonlinear Systems via Sampled-Data Output Feedback Control [J].
Feng, Zaiyong ;
Li, Shi ;
Ahn, Choon Ki ;
Xiang, Zhengrong .
IEEE SYSTEMS JOURNAL, 2022, 16 (04) :5868-5878
[6]   Outlier-resistant bserver-based H∞ PID control under stochastic communication protocol [J].
Fu, Haijing ;
Li, Jiahui ;
Han, Fei ;
Hou, Nan ;
Dong, Hongli .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
[7]   Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable [J].
Huba, Mikulas ;
Chamraz, Stefan ;
Bistak, Pavol ;
Vrancic, Damir .
SENSORS, 2021, 21 (18)
[8]   Dead-Time Compensation for the First-Order Dead-Time Processes: Towards a Broader Overview [J].
Huba, Mikulas ;
Bistak, Pavol ;
Vrancic, Damir ;
Zakova, Katarina .
MATHEMATICS, 2021, 9 (13)
[9]   Extending the Model-Based Controller Design to Higher-Order Plant Models and Measurement Noise [J].
Huba, Mikulas ;
Vrancic, Damir .
SYMMETRY-BASEL, 2021, 13 (05)
[10]   A Set of Active Disturbance Rejection Controllers Based on Integrator Plus Dead-Time Models [J].
Huba, Mikulas ;
Oliveira, Paulo Moura ;
Bistak, Pavol ;
Vrancic, Damir ;
Zakova, Katarina .
APPLIED SCIENCES-BASEL, 2021, 11 (04) :1-19