Global Solution to the Three-Dimensional Incompressible Flow of Liquid Crystals

被引:74
作者
Hu, Xianpeng [1 ]
Wang, Dehua [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
REGULARITY; EQUATIONS;
D O I
10.1007/s00220-010-1017-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The equations for the three-dimensional incompressible flow of liquid crystals are considered in a smooth bounded domain. The existence and uniqueness of the global strong solution with small initial data are established. It is also proved that when the strong solution exists, all the global weak solutions constructed in [16] must be equal to the unique strong solution.
引用
收藏
页码:861 / 880
页数:20
相关论文
共 20 条
[1]  
Amann H., 1995, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, V89
[2]  
[Anonymous], 1994, An introduction to the mathematical theory of the Navier-Stokes equations
[3]  
[Anonymous], 1996, OXFORD LECT SERIES M
[4]  
BERGH J., 1976, GRUNDLEHREN MATH WIS
[5]  
Chandrasekhar S., 1992, Liquid Crystals, Vsecond
[6]   Density-dependent incompressible fluids in bounded domains [J].
Danchin, R. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2006, 8 (03) :333-381
[7]  
de Gennes P. G., 1993, The Physics of Liquid Crystals, V2nd ed
[8]   Regularity of weak solutions of the compressible isentropic Navier-Stokes equations [J].
Desjardins, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :977-1008
[9]  
ERICKSEN JL, 1987, RES MECH, V21, P381
[10]   CONSERVATION LAWS FOR LIQUID CRYSTALS [J].
ERICKSEN, JL .
TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1961, 5 :23-34