Iron self-diffusion in nanocrystalline FeZr thin films

被引:9
作者
Gupta, A
Gupta, M
Pietsch, U
Ayachit, S
Rajagopalanl, S
Balamurgan, AK
Tyagi, AK
机构
[1] Interuniv Consortium, DAE Facil, Indore 452017, India
[2] Neutron Scattering Lab, CH-5232 Villigen, Switzerland
[3] Swiss Fed Inst Technol, Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[4] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
[5] Indira Gandhi Ctr Atom Res, MSD, Kalpakkam 603102, Tamil Nadu, India
关键词
D O I
10.1016/j.jnoncrysol.2004.07.051
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thin films of amorphous Fe85Zr15 alloy were deposited by ion-beam sputtering of a composite target. Analogous to the melt-spun amorphous alloys of similar composition, the crystallization of the amorphous film occurs in two steps, however, with a substantially reduced thermal stability. After completion of the first crystallization step which starts at 473 K, the microstructure consists of 12 nm nanocrystals of bcc-Fe embedded in a grain boundary region of the remaining amorphous phase. At 673 K, the remaining amorphous phase transforms into the Fe2Zr alloy. The self-diffusion measurements of iron in the nanocrystalline state and in the parent amorphous state has been carried out using secondary ion mass spectroscopy (SIMS) depth profiling and neutron reflectivity techniques. In contrast to the case of finemet Fe73.5Si13.5B9Nb3Cu1 alloy, where a significant enhancement of diffusivity takes place in the nanocrystalline state, in the present case the diffusivity in the nanocrystalline state is similar to that in the parent amorphous state. It is suggested that in this system the atomic diffusion occurs mainly via the grain boundary regions. The calculated values of the pre-exponential factor and the activation energy for the diffusion are D-0 = 1 x 10(-14+/-1) m(2)/s and E = (0.7 +/- 0.1) eV respectively. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 42 条
  • [1] MOSSBAUER-SPECTROSCOPY OF AMORPHOUS FE-SI-B ALLOYS WITH DIFFERENT FREE-VOLUME CONTENT
    ALLIA, P
    MILONE, AF
    VINAI, F
    FRATUCELLO, G
    RONCONI, F
    [J]. JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7750 - 7752
  • [2] Diffusion in nanocrystalline nickel
    Bokstein, BS
    Brose, HD
    Trusov, LI
    Khvostantseva, TP
    [J]. NANOSTRUCTURED MATERIALS, 1995, 6 (5-8): : 873 - 876
  • [3] DIFFUSION OF SILICON IN AMORPHOUS SILICA
    BREBEC, G
    SEGUIN, R
    SELLA, C
    BEVENOT, J
    MARTIN, JC
    [J]. ACTA METALLURGICA, 1980, 28 (03): : 327 - 333
  • [4] Cullity B.D., 1978, ELEMENTS XRAY DIFFRA, V2nd, P102
  • [5] NEUTRON-DIFFRACTION AND THE STRUCTURE OF AMORPHOUS NI0.95TB0.05
    FAINCHTEIN, R
    LANNIN, JS
    PRICE, DL
    [J]. PHYSICAL REVIEW B, 1987, 35 (09): : 4258 - 4263
  • [6] Diffusion in metallic glasses and supercooled melts
    Faupel, F
    Frank, W
    Macht, MP
    Mehrer, H
    Naundorf, V
    Rätzke, K
    Schober, HR
    Sharma, SK
    Teichler, H
    [J]. REVIEWS OF MODERN PHYSICS, 2003, 75 (01) : 237 - 280
  • [7] Local structure and ferromagnetic character of Fe-B and Fe-P amorphous alloys
    Fdez-Gubieda, ML
    García-Arribas, A
    Barandiarán, JM
    Antón, RL
    Orue, I
    Gorria, P
    Pizzini, S
    Fontaine, A
    [J]. PHYSICAL REVIEW B, 2000, 62 (09) : 5746 - 5750
  • [8] Diffusion in the intermetallic phase Fe3Si studied by Tracer and Mossbauer techniques
    Gude, A
    Sepiol, B
    Vogl, G
    Mehrer, H
    [J]. DEFECT AND DIFFUSION FORUM, 1997, 143 : 351 - 358
  • [9] Diffusion in the D0(3)-type intermetallic phase Fe3Si
    Gude, A
    Mehrer, H
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1997, 76 (01): : 1 - 29
  • [10] Guinier A., 1994, XRAY DIFFRACTION CRY