Scale-Space Theory, F-transform Kernels and CNN Realization

被引:3
作者
Molek, Vojtech [1 ]
Perfilieva, Irina [1 ]
机构
[1] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, Ctr Excellence IT4Innovat, 30 Dubna 22, Ostrava, Czech Republic
来源
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2019, PT II | 2019年 / 11507卷
关键词
F-transform; Initialization; Scale-space; Convolutional neural network; Classification;
D O I
10.1007/978-3-030-20518-8_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present scale-space and F-transform inspired modification to convolutional neural networks. The proposed modification improves network classification accuracy using multi-scale image representation and F-transform kernels pre-training. We evaluate our model on two databases and show better performance than networks without F-transform pre-training.
引用
收藏
页码:38 / 48
页数:11
相关论文
共 28 条
[1]  
[Anonymous], ARXIV151105641
[2]  
[Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[3]  
[Anonymous], 2016, J FUZZY SET VALUED A, DOI DOI 10.5899/2016/JFSVA-00268
[4]  
[Anonymous], 2014, P ADV NEUR INF PROC
[5]  
[Anonymous], 2015, ARXIV151106856
[6]  
Arora S, 2014, PR MACH LEARN RES, V32
[7]  
Deng L., 2012, IEEE signal processing magazine, V29, P141, DOI [DOI 10.1109/MSP.2012.2211477, 10.1109/msp.2012.2211477]
[8]  
Du Yunshu, 2017, ARXIV170904083
[9]  
Erhan D, 2010, J MACH LEARN RES, V11, P625
[10]  
Glorot X., 2010, P 13 INT C ART INT S, P249