Bottom-Up Assembly of DNA-Silica Nanocomposites into Micrometer-Sized Hollow Spheres

被引:22
作者
Hu, Yong [1 ]
Groesche, Maximilian [1 ]
Sheshachala, Sahana [1 ]
Oelschlaeger, Claude [2 ]
Willenbacher, Norbert [2 ]
Rabe, Kersten S. [1 ]
Niemeyer, Christof M. [1 ]
机构
[1] KIT, Inst Biol Interfaces IBG 1, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] KIT, Inst Mech Proc Engn & Mech, Gotthard Franz Str 3, D-76131 Karlsruhe, Germany
关键词
DNA hybridization chain reaction; DNA nanotechnology; hollow microspheres; microfluidics; nanomaterials; IMMOBILIZATION; NANOPARTICLES; DROPLETS; PROTEIN;
D O I
10.1002/anie.201910606
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although DNA nanotechnology has developed into a highly innovative and lively field of research at the interface between chemistry, materials science, and biotechnology, there is still a great need for methodological approaches for bridging the size regime of DNA nanostructures with that of micrometer- and millimeter-sized units for practical applications. We report on novel hierarchically structured composite materials from silica nanoparticles and DNA polymers that can be obtained by self-assembly through the clamped hybridization chain reaction. The nanocomposite materials can be assembled into thin layers within microfluidically generated water-in-oil droplets to produce mechanically stabilized hollow spheres with uniform size distributions at high throughput rates. The fact that cells can be encapsulated in these microcontainers suggests that our concept not only contributes to the further development of supramolecular bottom-up manufacturing, but can also be exploited for applications in the life sciences.
引用
收藏
页码:17269 / 17272
页数:4
相关论文
共 34 条
[1]  
[Anonymous], 2017, ANGEW CHEM, DOI DOI 10.1002/ANGE.201610125
[2]  
[Anonymous], 2006, ANGEW CHEM
[3]  
[Anonymous], 2010, ANGEW CHEM
[4]  
Giljohann D.A., 2010, Angew. Chem, V122, P3352, DOI DOI 10.1002/ANGE.200904359
[5]   Gold Nanoparticles for Biology and Medicine [J].
Giljohann, David A. ;
Seferos, Dwight S. ;
Daniel, Weston L. ;
Massich, Matthew D. ;
Patel, Pinal C. ;
Mirkin, Chad A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (19) :3280-3294
[6]   Microfluidic Chips for Life Sciences-A Comparison of Low Entry Manufacturing Technologies [J].
Groesche, Maximilian ;
Zoheir, Ahmed E. ;
Stegmaier, Johannes ;
Mikut, Ralf ;
Mager, Dario ;
Korvink, Jan G. ;
Rabe, Kersten S. ;
Niemeyer, Christof M. .
SMALL, 2019, 15 (35)
[7]   Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification [J].
Guo, Song ;
Lin, Weikang Nicholas ;
Hu, Yuwei ;
Sun, Guoyun ;
Dinh-Tuan Phan ;
Chen, Chia-Hung .
LAB ON A CHIP, 2018, 18 (13) :1914-1920
[8]   Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies [J].
Hilliard, LR ;
Zhao, XJ ;
Tan, WH .
ANALYTICA CHIMICA ACTA, 2002, 470 (01) :51-56
[9]   DNA Origami: Scaffolds for Creating Higher Order Structures [J].
Hong, Fan ;
Zhang, Fei ;
Liu, Yan ;
Yan, Hao .
CHEMICAL REVIEWS, 2017, 117 (20) :12584-12640
[10]   DNA Nanotechnology-Enabled Drug Delivery Systems [J].
Hu, Qinqin ;
Li, Hua ;
Wang, Lihua ;
Gu, Hongzhou ;
Fan, Chunhai .
CHEMICAL REVIEWS, 2019, 119 (10) :6459-6506