In Vivo Imaging of MSCT and Micro-CT: a Comparison

被引:5
作者
Schwarz, M. [1 ]
Engelhorn, T. [1 ]
Eyupoglu, I. Y. [1 ]
Bruenner, H. [1 ]
Struffert, T. [1 ]
Kalender, W. [1 ]
Doerfler, A. [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Neuroradiol, D-91054 Erlangen, Germany
来源
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN | 2010年 / 182卷 / 04期
关键词
brain; CT; micro-CT; MSCT; glioma; COMPUTED-TOMOGRAPHY; RAT GLIOMAS; MODELS; MRI; 9L;
D O I
10.1055/s-0028-1109817
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To evaluate the potential of MSCT and a novel mu CT system to assess the volume of malignant brain tumors in rats compared to histology. Materials and Methods: Fourteen rats underwent stereotactic implantation of GFP-marked F98-glioma cells. On day 10 after implantation, animals received double-dose contrast-enhanced mu CT and MSCT imaging using Iomeprol. MSCT-and mu CT-derived tumor volumes were calculated and compared to histology (fluorescence staining) as the gold standard. Results: There was good correlation between the mu CT-derived tumor volume (69 +/- 23 mm(3)) and histology (81 +/- 14 mm(3); p > 0.14). MSCT, however, showed significantly smaller tumor volumes (55 +/- 25 mm(3)) compared to histology (p < 0.01) but was able to detect the tumors in all animals. Conclusion: mu CT allows in vivo imaging of the contrast-enhancing parts of experimental gliomas with high correlation to histology. Although MSCT is less suitable for assessing exact tumor volume, this method reliably detects tumors in rats. Due to the high spatial resolution, mu CT-systems could play an important role for fusion imaging, e. g. to assess experimental brain gliomas with multimodal mu CT/PET- or mu CT/MRI-fusion images.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 19 条
[1]  
Badea C., 2005, MOL IMAGING, V4, P110
[2]   Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding [J].
Ballyns, Jeffery J. ;
Gleghorn, Jason P. ;
Niebrzydowski, Vicki ;
Rawlinson, Jeremy J. ;
Potter, Hollis G. ;
Maher, Suzanne A. ;
Wright, Timothy M. ;
Bonassar, Lawrence J. .
TISSUE ENGINEERING PART A, 2008, 14 (07) :1195-1202
[4]  
BERENS ME, 1991, NEOPLASIA, V1, P208
[5]  
BOONE JM, 2005, MOL IMAGING, V3, P149
[6]   3D micro-CT imaging of the postmortem brain [J].
de Crespigny, Alex ;
Bou-Reslan, Hani ;
Nishimura, Merry C. ;
Phillips, Heidi ;
Carano, Richard A. D. ;
D'Arceuil, Helen E. .
JOURNAL OF NEUROSCIENCE METHODS, 2008, 171 (02) :207-213
[7]   In vivo quantitative three-dimensional motion mapping of the murine myocardium with PC-MRI at 17.6 T [J].
Herold, V ;
Mörchel, P ;
Faber, C ;
Rommel, E ;
Haase, A ;
Jakob, PM .
MAGNETIC RESONANCE IN MEDICINE, 2006, 55 (05) :1058-1064
[8]   History of cardiac computed tomography: single to 320-detector row multislice computed tomography [J].
Hurlock, Gregory S. ;
Higashino, Hiroshi ;
Mochizuki, Teruhito .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2009, 25 :31-42
[9]   A three-dimensional registration method for automated fusion of micro PET-CT-SPECT whole-body images [J].
Jan, ML ;
Chuang, KS ;
Chen, GW ;
Ni, YC ;
Chen, S ;
Chang, CH ;
Wu, J ;
Lee, TW ;
Fu, YK .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (07) :886-893
[10]  
Kim B, 1995, CLIN CANCER RES, V1, P643