An interval method to measure the uncertainty of basic probability assignment

被引:3
作者
Su, Jinyan [1 ,2 ]
Deng, Yong [2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[3] Shannxi Normal Univ, Sch Educ, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
Basic probability assignment; Uncertainty measure; Interval probability; Tsallis entropy; Deng entropy; DEMPSTER-SHAFER THEORY; TSALLIS ENTROPY; COMBINATION; SPECIFICITY; SET;
D O I
10.1007/s00500-022-07114-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Comparing the probability distribution, basic probability assignment in evidence theory is more efficient to deal with uncertain information. However, the uncertainty measure of basic probability assignment is still an open issue. In this paper, a new uncertainty measure based on Tsallis entropy is proposed to solve problems when the basic probability assignments are not given or being transformed into interval probability distribution. The proposed entropy is an extension of Tsallis entropy in continuous space. Some numerical examples are illustrated to show the efficiency of the proposed method.
引用
收藏
页码:6041 / 6050
页数:10
相关论文
共 68 条
[1]   Residual Renyi entropy of k-record values [J].
Asha, P. S. ;
Chacko, Manoj .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (16) :4874-4885
[2]   A unified formulation of entropy and its application [J].
Balakrishnan, Narayanaswamy ;
Buono, Francesco ;
Longobardi, Maria .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 596
[3]   A Dual Measure of Uncertainty: The Deng Extropy [J].
Buono, Francesco ;
Longobardi, Maria .
ENTROPY, 2020, 22 (05)
[4]   A distance for belief functions of orderable set [J].
Cheng, Cuiping ;
Xiao, Fuyuan .
PATTERN RECOGNITION LETTERS, 2021, 145 :165-170
[5]  
Clausius R, 1968, READEX MICROPRINT
[6]   Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis [J].
Cui, Huizi ;
Zhou, Lingge ;
Li, Yan ;
Kang, Bingyi .
CHAOS SOLITONS & FRACTALS, 2022, 155
[7]   Tsallis Entropy, Likelihood, and the Robust Seismic Inversion [J].
de Lima, Igo Pedro ;
da Silva, Sergio Luiz E. F. ;
Corso, Gilberto ;
de Araujo, Joao M. .
ENTROPY, 2020, 22 (04)
[8]  
Dempster AP, 2008, STUD FUZZ SOFT COMP, V219, P57
[9]   Information Volume of Mass Function [J].
Deng, Y. .
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (06) :1-13
[10]   Deng entropy [J].
Deng, Yong .
CHAOS SOLITONS & FRACTALS, 2016, 91 :549-553