Complex Ginzburg-Landau equations as perturbations of nonlinear Schrodinger equations a Melnikov approach

被引:11
作者
Cruz-Pacheco, G
Levermore, CD
Luce, BP
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, FENOMEC, Mexico City 04510, DF, Mexico
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
quasiperiodic; homoclinic; Melnikov criteria;
D O I
10.1016/j.physd.2004.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the persistence of quasiperiodic and homoclinic solutions of generalized nonlinear Schrodinger equations under Ginzburg-Landau perturbations. In this paper, the first of a series, Melnikov criteria for the persistence of quasiperiodic and homoclinic solutions are derived directly from the governing partial differential equations via an averaging technique. For families of tori of quasiperiodic solutions, such as rotating waves and traveling waves, that arise within critical sets of linear combinations of conserved functionals, we find that usually only isolated tori will satisfy these selection criteria. Moreover, in some simple cases these criteria are sufficient to conclude that a torus persists. We also demonstrate the nonpersistence of solutions that are homoclinic to rotating waves under a broad class of Ginzburg-Landau perturbations which satisfy a convexity condition. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 28 条
[11]   WEAK AND STRONG SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION [J].
DOERING, CR ;
GIBBON, JD ;
LEVERMORE, CD .
PHYSICA D, 1994, 71 (03) :285-318
[12]  
ERCOLANI NM, 1987, GEOMETRY MODULATIONA, V2
[13]  
FOREST MG, 1986, AMS MATH APPL, V2, P35
[14]   DIMENSION OF THE ATTRACTORS ASSOCIATED TO THE GINZBURG-LANDAU PARTIAL-DIFFERENTIAL EQUATION [J].
GHIDAGLIA, JM ;
HERON, B .
PHYSICA D, 1987, 28 (03) :282-304
[15]  
HORSCH K, 1997, THESIS U ARIZONA TUC
[16]  
KEEFE LR, 1985, STUD APPL MATH, V73, P91
[17]  
Levermore CV, 1996, LECT APPL MATH, V31, P141
[18]  
Luce B.P., 1995, PHYSICA D, V83, P1
[19]   The inviscid limit for the complex Ginzburg-Landau equation [J].
Machihara, S ;
Nakamura, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (02) :552-564
[20]   ONSET OF CHAOS IN THE GENERALIZED GINZBURG-LANDAU EQUATION [J].
MALOMED, BA ;
NEPOMNYASHCHY, AA .
PHYSICAL REVIEW A, 1990, 42 (10) :6238-6240