Complex Ginzburg-Landau equations as perturbations of nonlinear Schrodinger equations a Melnikov approach

被引:11
作者
Cruz-Pacheco, G
Levermore, CD
Luce, BP
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, FENOMEC, Mexico City 04510, DF, Mexico
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
quasiperiodic; homoclinic; Melnikov criteria;
D O I
10.1016/j.physd.2004.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the persistence of quasiperiodic and homoclinic solutions of generalized nonlinear Schrodinger equations under Ginzburg-Landau perturbations. In this paper, the first of a series, Melnikov criteria for the persistence of quasiperiodic and homoclinic solutions are derived directly from the governing partial differential equations via an averaging technique. For families of tori of quasiperiodic solutions, such as rotating waves and traveling waves, that arise within critical sets of linear combinations of conserved functionals, we find that usually only isolated tori will satisfy these selection criteria. Moreover, in some simple cases these criteria are sufficient to conclude that a torus persists. We also demonstrate the nonpersistence of solutions that are homoclinic to rotating waves under a broad class of Ginzburg-Landau perturbations which satisfy a convexity condition. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 28 条
[1]   ON HOMOCLINIC STRUCTURE AND NUMERICALLY INDUCED CHAOS FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
ABLOWITZ, MJ ;
HERBST, BM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (02) :339-351
[2]  
ALEJANDRO BA, 1997, PHYS LETT A, V233, P63
[3]   Inviscid limits of the complex Ginzburg-Landau equation [J].
Bechouche, P ;
Jüngel, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :201-226
[4]   On the relationship of periodic wavetrains and solitary waves of complex Ginzburg-Landau type equations [J].
Cruz-Pacheco, G ;
Luce, BP .
PHYSICS LETTERS A, 1997, 236 (5-6) :391-402
[5]  
CRUZPACHECO G, 1995, THESIS U ARIZONA TUC
[6]  
CRUZPACHECO G, COMPLEX GINSBURGLAND
[7]  
CRUZPACHECO G, COMPLEX GINZBURGLAND
[8]   FINITE-DIMENSIONAL MODELS OF THE GINZBURG-LANDAU EQUATION [J].
DOELMAN, A .
NONLINEARITY, 1991, 4 (02) :231-250
[9]   REGULARITY OF SOLUTIONS AND THE CONVERGENCE OF THE GALERKIN METHOD IN THE GINZBURG-LANDAU EQUATION [J].
DOELMAN, A ;
TITI, ES .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (3-4) :299-321
[10]   Low-dimensional behaviour in the complex Ginzburg-Landau equation [J].
Doering, Charles R. ;
Gibbon, John D. ;
Holm, Darryl D. ;
Nicolaenko, Basil .
NONLINEARITY, 1988, 1 (02) :279-309