Corrigendum: "Spectral rigidity of automorphic orbits in free groups"

被引:0
|
作者
Carette, Mathieu [1 ]
Francaviglia, Stefano [2 ]
Kapovich, Ilya [3 ]
Martino, Armando [4 ]
机构
[1] Inst Rech Math & Phys, Fac Sci, B-1348 Louvain, Belgium
[2] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[4] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2014年 / 14卷 / 05期
基金
美国国家科学基金会;
关键词
LAMINATIONS; CURRENTS; COMPLEX;
D O I
10.2140/agt.2014.14.3081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lemma 5.1 in our paper [5] says that every infinite normal subgroup of Out (F-N) contains a fully irreducible element; this lemma was substantively used in the proof of the main result, Theorem A in [5]. Our proof of Lemma 5.1 in [5] relied on a subgroup classification result of Handel and Mosher [8], originally stated in [8] for arbitrary subgroups H <= Out(F-N). It subsequently turned out (see Handel and Mosher [9, page 1]) that the proof of the Handel-Mosher theorem needs the assumption that H is finitely generated. Here we provide an alternative proof of Lemma 5.1 from [5], which uses the corrected version of the Handel-Mosher theorem and relies on the 0-acylindricity of the action of Out(F-N) on the free factor complex (due to Bestvina, Mann and Reynolds).
引用
收藏
页码:3081 / 3088
页数:8
相关论文
共 35 条
  • [1] Spectral rigidity of automorphic orbits in free groups
    Carette, Mathieu
    Francaviglia, Stefano
    Kapovich, Ilya
    Martino, Armando
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (03): : 1457 - 1486
  • [2] RANDOM LENGTH-SPECTRUM RIGIDITY FOR FREE GROUPS
    Kapovich, Ilya
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1549 - 1560
  • [3] Geometry and rigidity of mapping class groups
    Behrstock, Jason
    Kleiner, Bruce
    Minsky, Yair
    Mosher, Lee
    GEOMETRY & TOPOLOGY, 2012, 16 (02) : 781 - 888
  • [4] Finite orbits for large groups of automorphisms of projective surfaces
    Cantat, Serge
    Dujardin, Romain
    COMPOSITIO MATHEMATICA, 2023, 160 (01) : 120 - 175
  • [5] Finite orbits for large groups of automorphisms of projective surfaces
    Cantat, Serge
    Dujardin, Romain
    COMPOSITIO MATHEMATICA, 2024, 160 (01)
  • [6] Spectral Theorems for Random Walks on Mapping Class Groups and Out (FN)
    Dahmani, Francois
    Horbez, Camille
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (09) : 2693 - 2744
  • [7] Geometric intersection number and analogues of the curve complex for free groups
    Kapovich, Ilya
    Lustig, Martin
    GEOMETRY & TOPOLOGY, 2009, 13 : 1805 - 1833
  • [8] Random Extensions of Free Groups and Surface Groups are Hyperbolic
    Taylor, Samuel J.
    Tiozzo, Giulio
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (01) : 294 - 310
  • [9] Hyperbolic extensions of free groups
    Dowdall, Spencer
    Taylor, Samuel J.
    GEOMETRY & TOPOLOGY, 2018, 22 (01) : 517 - 570
  • [10] Extensions of Veech groups II: Hierarchical hyperbolicity and quasi-isometric rigidity
    Dowdall, Spencer
    Durham, Matthew G.
    Leininger, Christopher J.
    Sisto, Alessandro
    COMMENTARII MATHEMATICI HELVETICI, 2024, 99 (01) : 149 - 228