Spatial quantile estimation of multivariate threshold time series models

被引:2
作者
Jiang, Jiancheng [1 ]
Jiang, Xuejun [2 ]
Li, Jingzhi [2 ]
Liu, Yi [1 ]
Yan, Wanfeng [2 ,3 ]
机构
[1] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC USA
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
[3] Banque Pictet & Cie SA, Route Acacias 60, CH-1211 Geneva 73, Switzerland
关键词
Spatial quantile regression; Vector time series; Multivariate threshold time series models; ARCH; AUTOREGRESSION; ROBUST;
D O I
10.1016/j.physa.2017.05.062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study spatial quantile regression estimation of multivariate threshold time series models. Bahadur's representations for our estimators are established, which naturally lead to asymptotic normality of the estimators. Simulations and a real example are used to evaluate the performance of the proposed estimators. (C) 2017 Elsevier B.U. All rights reserved.
引用
收藏
页码:772 / 781
页数:10
相关论文
共 21 条
[2]   On multivariate quantile regression [J].
Chakraborty, B .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 110 (1-2) :109-132
[3]  
Chaudhuri P, 1996, J AM STAT ASSOC, V91, P862
[4]   FUNCTIONAL-COEFFICIENT AUTOREGRESSIVE MODELS [J].
CHEN, R ;
TSAY, RS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :298-308
[5]   Least absolute deviation estimation for regression with ARMA errors [J].
Davis, RA ;
Dunsmuir, WTM .
JOURNAL OF THEORETICAL PROBABILITY, 1997, 10 (02) :481-497
[6]   MULTIVARIATE SIMULTANEOUS GENERALIZED ARCH [J].
ENGLE, RF ;
KRONER, KF .
ECONOMETRIC THEORY, 1995, 11 (01) :122-150
[7]  
Fan J., 2003, NONLINEAR TIME SERIE
[8]  
Jiang JC, 2001, J FORECASTING, V20, P111, DOI 10.1002/1099-131X(200103)20:2<111::AID-FOR786>3.0.CO
[9]  
2-N
[10]   Weighted composite quantile regression estimation of DTARCH models [J].
Jiang, Jiancheng ;
Jiang, Xuejun ;
Song, Xinyuan .
ECONOMETRICS JOURNAL, 2014, 17 (01) :1-23