Robust multigrid methods for nonsmooth coefficient elliptic linear systems

被引:37
作者
Chan, TF [1 ]
Wan, WL
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Stanford Univ, SCCM Program, Stanford, CA 94305 USA
关键词
D O I
10.1016/S0377-0427(00)00411-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey the literature on robust multigrid methods which have been developed in recent years for solving second-order elliptic PDEs with nonsmooth coefficients. We highlight the key ideas of designing robust multigrid methods which are able to recover the usual multigrid efficiency for nonsmooth coefficient PDEs on structured or unstructured grids. In particular, we shall describe various approaches for constructing the interpolation and the smoothing operators, and the coarse grid points selections. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:323 / 352
页数:30
相关论文
共 102 条
[51]  
Fedorenko R. P., 1964, USSR COMPUTAT MATH P, V4, P227, DOI [10.1016/0041-5553(64)90253-8, 10.1016%2F0041-5553%2864%2990253-8, DOI 10.1016/0041-5553(64)90253-8]
[52]   Additive multilevel preconditioners based on bilinear interpolation, matrix-dependent geometric coarsening and algebraic multigrid coarsening for second-order elliptic PDEs [J].
Grauschopf, T ;
Griebel, M ;
Regler, H .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) :63-95
[54]   Parallel preconditioning with sparse approximate inverses [J].
Grote, MJ ;
Huckle, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (03) :838-853
[55]  
GUILLARD H, 1993, 1898 INRIA
[56]  
Hackbusch W., 1980, Special Topics of Applied Mathematics. Functional Analysis, Numerical Analysis and Optimization. Proceedings of the Seminar, P151
[57]   THE FREQUENCY DECOMPOSITION MULTI-GRID METHOD .1. APPLICATION TO ANISOTROPIC EQUATIONS [J].
HACKBUSCH, W .
NUMERISCHE MATHEMATIK, 1989, 56 (2-3) :229-245
[58]  
Hackbusch W., 1996, MAT MODEL, V8, P31
[59]  
HACKBUSCH W, 1985, MUTLIGRID METHODS AP
[60]  
Hackbusch W., 1978, LECT NOTES MATH, V631, P51