Robust multigrid methods for nonsmooth coefficient elliptic linear systems

被引:36
作者
Chan, TF [1 ]
Wan, WL
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Stanford Univ, SCCM Program, Stanford, CA 94305 USA
关键词
D O I
10.1016/S0377-0427(00)00411-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey the literature on robust multigrid methods which have been developed in recent years for solving second-order elliptic PDEs with nonsmooth coefficients. We highlight the key ideas of designing robust multigrid methods which are able to recover the usual multigrid efficiency for nonsmooth coefficient PDEs on structured or unstructured grids. In particular, we shall describe various approaches for constructing the interpolation and the smoothing operators, and the coarse grid points selections. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:323 / 352
页数:30
相关论文
共 102 条
[31]  
CHAN TF, 1997, 28 COMP FLUD DYN MAR
[32]  
CHAN TF, 1994, P 3 INT C ADV NUM ME, P53
[33]  
CHAN TF, 1998, 988 CAM UCLA DEP MAT
[34]  
CHAN TF, 1996, 9630 CAM UCLA DEP MA
[35]   THE INTERFACE PROBING TECHNIQUE IN DOMAIN DECOMPOSITION [J].
CHAN, TFC ;
MATHEW, TP .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) :212-238
[36]   NEW INTERPOLATION FORMULAS OF USING GEOMETRIC ASSUMPTIONS IN THE ALGEBRAIC MULTIGRID METHOD [J].
CHANG, QS ;
WONG, YS ;
LI, ZF .
APPLIED MATHEMATICS AND COMPUTATION, 1992, 50 (2-3) :223-254
[37]   Approximate inverse preconditioners via sparse-sparse iterations [J].
Chow, E ;
Saad, Y .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :995-1023
[38]  
CLEARY AJ, 1998, UCRLJC130893 L LIV N
[39]  
CLEARY AJ, 1998, UCRLJC130718 L LIV N
[40]   BLACK-BOX MULTIGRID FOR NONSYMMETRIC PROBLEMS [J].
DENDY, JE .
APPLIED MATHEMATICS AND COMPUTATION, 1983, 13 (3-4) :261-283