Robust multigrid methods for nonsmooth coefficient elliptic linear systems

被引:36
作者
Chan, TF [1 ]
Wan, WL
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Stanford Univ, SCCM Program, Stanford, CA 94305 USA
关键词
D O I
10.1016/S0377-0427(00)00411-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey the literature on robust multigrid methods which have been developed in recent years for solving second-order elliptic PDEs with nonsmooth coefficients. We highlight the key ideas of designing robust multigrid methods which are able to recover the usual multigrid efficiency for nonsmooth coefficient PDEs on structured or unstructured grids. In particular, we shall describe various approaches for constructing the interpolation and the smoothing operators, and the coarse grid points selections. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:323 / 352
页数:30
相关论文
共 102 条
  • [1] THE MULTI-GRID METHOD FOR THE DIFFUSION EQUATION WITH STRONGLY DISCONTINUOUS COEFFICIENTS
    ALCOUFFE, RE
    BRANDT, A
    DENDY, JE
    PAINTER, JW
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (04): : 430 - 454
  • [2] [Anonymous], 1971, COMP MATH MATH PHYS+, DOI 10.1016/0041-5553(71)90170-4
  • [3] [Anonymous], NUMER MATH
  • [4] [Anonymous], FILTERNDE ZERLEGUNGE
  • [5] [Anonymous], 1990, SPLITTING ALTERNATIN
  • [6] AXELSSON O, 1989, NUMER MATH, V56, P157, DOI 10.1007/BF01409783
  • [7] ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS .2.
    AXELSSON, O
    VASSILEVSKI, PS
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) : 1569 - 1590
  • [8] BAKHVALOV N. S., 1966, USSR COMP MATH MATH, V6, P101, DOI [DOI 10.1016/0041-5553(66)90118-2, 10.1016/0041-5553(66)90118-2]
  • [9] An algorithm for coarsening unstructured meshes
    Bank, RE
    Xu, JC
    [J]. NUMERISCHE MATHEMATIK, 1996, 73 (01) : 1 - 36
  • [10] THE HIERARCHICAL BASIS MULTIGRID METHOD
    BANK, RE
    DUPONT, TF
    YSERENTANT, H
    [J]. NUMERISCHE MATHEMATIK, 1988, 52 (04) : 427 - 458