Inhomogeneous high frequency expansion-free gravitational waves

被引:2
作者
Barrabes, C. [1 ]
Hogan, P. A.
机构
[1] Univ Tours, Lab Math & Phys Theor, CNRS, UMR 6083, F-37200 Tours, France
[2] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
来源
PHYSICAL REVIEW D | 2007年 / 75卷 / 12期
关键词
D O I
10.1103/PhysRevD.75.124012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a natural inhomogeneous generalization of high frequency plane gravitational waves. The waves are high frequency waves of the Kundt type whose null propagation direction in space-time has vanishing expansion, twist, and shear but is not covariantly constant. The introduction of a cosmological constant is discussed in some detail and a comparison is made with high frequency gravity waves having wave fronts homeomorphic to 2-spheres.
引用
收藏
页数:8
相关论文
共 31 条
[1]  
BARRABES C, 2003, SINGULAR NULL HYPERS
[2]  
Bicák J, 1999, J MATH PHYS, V40, P4495, DOI 10.1063/1.532981
[3]   THE HIGH-FREQUENCY LIMIT IN GENERAL-RELATIVITY [J].
BURNETT, GA .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (01) :90-96
[4]   CONSTRUCTION OF RADIATIVE SOLUTIONS APPROXIMATING EINSTEINS EQUATIONS [J].
CHOQUETBRUHAT, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (01) :16-+
[5]  
DEBEVER R, 1960, CR HEBD ACAD SCI, V251, P1160
[6]   ALL NON-TWISTING NS WITH COSMOLOGICAL CONSTANT [J].
DIAZ, AG ;
PLEBANSKI, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (11) :2655-2658
[7]   Republication of: Relativistic cosmology (Reprinted) [J].
Ellis, George F. R. .
GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (03) :581-660
[8]   High frequency gravitational radiation and ringing down of an isolated gravitating system [J].
Futamase, T ;
Hogan, P .
PROGRESS OF THEORETICAL PHYSICS, 2000, 103 (06) :1147-1160
[9]   SOME APPLICATIONS OF INFINITESIMAL-HOLONOMY GROUP TO PETROV CLASSIFICATION OF EINSTEIN SPACES [J].
GOLDBERG, JN ;
KERR, RP .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (03) :327-&
[10]   Generalized Kundt waves and their physical interpretation [J].
Griffiths, JB ;
Docherty, P ;
Podolsky, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (01) :207-222