Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance

被引:34
|
作者
Chen, Fenqi [1 ]
Fang, Peng [1 ]
Peng, Yunling [1 ,2 ]
Zeng, Wenjing [1 ]
Zhao, Xiaoqiang [2 ]
Ding, Yongfu [1 ]
Zhuang, Zelong [1 ]
Gao, Qiaohong [1 ]
Ren, Bin [1 ]
机构
[1] Gansu Agr Univ, Coll Agron, Lanzhou 730070, Gansu, Peoples R China
[2] Gansu Prov Key Lab Aridland Crop Sci, Lanzhou 730070, Gansu, Peoples R China
基金
国家重点研发计划;
关键词
maize; seedling root; salt stress; physiological response; proteomic analysis; iTRAQ; qRT-PCR; PROTEIN GENE; DROUGHT TOLERANCE; PROVIDES INSIGHTS; SALINITY STRESS; WATER-DEFICIT; ARABIDOPSIS; RICE; RESPONSES; EXPRESSION; GENOTYPES;
D O I
10.3390/ijms20194725
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salt stress is one of the key abiotic stresses that causes great loss of yield and serious decrease in quality in maize (Zea mays L.). Therefore, it is very important to reveal the molecular mechanism of salt tolerance in maize. To acknowledge the molecular mechanisms underlying maize salt tolerance, two maize inbred lines, including salt-tolerant 8723 and salt-sensitive P138, were used in this study. Comparative proteomics of seedling roots from two maize inbred lines under 180 mM salt stress for 10 days were performed by the isobaric tags for relative and absolute quantitation (iTRAQ) approach. A total of 1056 differentially expressed proteins (DEPs) were identified. In total, 626 DEPs were identified in line 8723 under salt stress, among them, 378 up-regulated and 248 down-regulated. There were 473 DEPs identified in P138, of which 212 were up-regulated and 261 were down-regulated. Venn diagram analysis showed that 17 DEPs were up-regulated and 12 DEPs were down-regulated in the two inbred lines. In addition, 8 DEPs were up-regulated in line 8723 but down-regulated in P138, 6 DEPs were down-regulated in line 8723 but up-regulated in P138. In salt-stressed 8723, the DEPs were primarily associated with phenylpropanoid biosynthesis, starch and sucrose metabolism, and the mitogen-activated protein kinase (MAPK) signaling pathway. Intriguingly, the DEPs were only associated with the nitrogen metabolism pathway in P138. Compared to P138, the root response to salt stress in 8723 could maintain stronger water retention capacity, osmotic regulation ability, synergistic effects of antioxidant enzymes, energy supply capacity, signal transduction, ammonia detoxification ability, lipid metabolism, and nucleic acid synthesis. Based on the proteome sequencing information, changes of 8 DEPs abundance were related to the corresponding mRNA levels by quantitative real-time PCR (qRT-PCR). Our results from this study may elucidate some details of salt tolerance mechanisms and salt tolerance breeding of maize.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Transcriptional analysis of major chaperone genes in salt-tolerant and salt-sensitive mesorhizobia
    Brigido, Clarisse
    Alexandre, Ana
    Oliveira, Solange
    MICROBIOLOGICAL RESEARCH, 2012, 167 (10) : 623 - 629
  • [22] ANTIOXIDANT RESPONSE TO NACL STRESS IN SALT-TOLERANT AND SALT-SENSITIVE CULTIVARS OF COTTON
    GOSSETT, DR
    MILLHOLLON, EP
    LUCAS, MC
    CROP SCIENCE, 1994, 34 (03) : 706 - 714
  • [23] Effects of salt stress on root plasma membrane characteristics of salt-tolerant and salt-sensitive buffalograss clones
    Lin, H
    Wu, L
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 1996, 36 (03) : 239 - +
  • [24] Growth and physiological response of salt-sensitive and salt-tolerant rootstocks of citrus to paclobutrazol under salt stress
    Dubey, A. K.
    Srivastav, Manish
    Singh, A. K.
    Pandey, R. N.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2009, 79 (08): : 595 - 599
  • [25] Growth response of the salt-sensitive and the salt-tolerant sugarcane genotypes to potassium nutrition under salt stress
    Ashraf, Muhammad
    Afzal, Muhammad
    Ahmad, Rashid
    Maqsood, Muhammad A.
    Shahzad, Sher M.
    Tahir, Mukkram A.
    Akhtar, Naeem
    Aziz, Ahsan
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2012, 58 (04) : 385 - 398
  • [26] Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants
    Guo, Jianrong
    Shan, Changdan
    Zhang, Yifan
    Wang, Xinlei
    Tian, Huaying
    Han, Guoliang
    Zhang, Yi
    Wang, Baoshan
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [27] Dissipation of excess photosynthetic energy contributes to salinity tolerance: A comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas
    Lima Neto, Milton C.
    Lobo, Ana K. M.
    Martins, Marcio O.
    Fontenele, Adilton V.
    Silveira, Joaquim Albenisio G.
    JOURNAL OF PLANT PHYSIOLOGY, 2014, 171 (01) : 23 - 30
  • [28] GENOTYPIC RESPONSES TO SALINITY - DIFFERENCES BETWEEN SALT-SENSITIVE AND SALT-TOLERANT GENOTYPES OF TOMATO
    RUSH, DW
    EPSTEIN, E
    PLANT PHYSIOLOGY, 1976, 57 (02) : 162 - 166
  • [29] ISOLATION AND CHARACTERIZATION OF SALT-SENSITIVE MUTANTS OF A SALT-TOLERANT YEAST ZYGOSACCHAROMYCES-ROUXII
    YAGI, T
    TADA, K
    FEMS MICROBIOLOGY LETTERS, 1988, 49 (02) : 317 - 321
  • [30] Different Root Anatomical Changes in Salt-tolerant and Salt-sensitive Foxtail Millet Genotypes
    Karjunita, Nike
    Khumaida, Nurul
    Ardie, Sintho Wahyuning
    AGRIVITA, 2019, 41 (01): : 88 - 96