A CLASSICAL MECHANICAL MODEL OF BROWNIAN MOTION WITH PLURAL PARTICLES

被引:12
作者
Kusuoka, Shigeo [1 ]
Liang, Song [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
基金
日本学术振兴会;
关键词
Infinite particle systems; classical mechanics; Markov processes; diffusions; convergence; Brownian motion;
D O I
10.1142/S0129055X10004077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a connection between diffusion processes and classical mechanical systems in this paper. Precisely, we consider a system of plural massive particles interacting with an ideal gas, evolved according to classical mechanical principles, via interaction potentials. We prove the almost sure existence and uniqueness of the solution of the considered dynamics, prove the convergence of the solution under a certain scaling limit, and give the precise expression of the limiting process, a diffusion process.
引用
收藏
页码:733 / 838
页数:106
相关论文
共 50 条
[41]   Bayesian model selection with fractional Brownian motion [J].
Krog, Jens ;
Jacobsen, Lars H. ;
Lund, Frederik W. ;
Wustner, Daniel ;
Lomholt, Michael A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
[42]   The flotation rates of fine spherical particles under Brownian and convective motion [J].
Ramirez, JA ;
Zinchenko, A ;
Loewenberg, M ;
Davis, RH .
CHEMICAL ENGINEERING SCIENCE, 1999, 54 (02) :149-157
[43]   The motion of Brownian particles suspended in a non-uniform fluid flow [J].
Alguacil, F. J. ;
Alonso, M. .
JOURNAL OF AEROSOL SCIENCE, 2024, 179
[44]   BROWNIAN-MOTION OF SPHERICAL-PARTICLES NEAR A DEFORMING INTERFACE [J].
YANG, SM .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1995, 12 (04) :421-427
[45]   Brownian Motion of Charged Particles Driven by Correlated Noise in Magnetic Field [J].
Lisy, Vladimir ;
Tothova, Jana .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2013, 42 (6-7) :365-380
[46]   Brownian motion in a gas of charged particles under the influence of a magnetic field [J].
Tothova, Jana ;
Lisy, Vladimir .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 559
[47]   Brownian motion in a classical ideal gas: A microscopic approach to Langevin’s equation [J].
Rangan Lahiri ;
Anirban Arvind .
Pramana, 2004, 62 :1015-1028
[48]   Neutral stochastic differential equations driven by Brownian motion and fractional Brownian motion in a Hilbert space [J].
Liu, Weiguo ;
Luo, Jiaowan .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (1-2) :235-253
[49]   SOME CLASSICAL-NEW RESULTS ON THE SET-INDEXED BROWNIAN MOTION [J].
Yosef, Arthur .
ADVANCES AND APPLICATIONS IN STATISTICS, 2015, 44 (01) :57-76
[50]   Brownian motion in a classical ideal gas: A microscopic approach to Langevin's equation [J].
Lahiri, R ;
Arvind ;
Sain, A .
PRAMANA-JOURNAL OF PHYSICS, 2004, 62 (05) :1015-1028